1 |
BIAN S Q, ZHAO W X, WANG J P, et al. A relevant and diverse retrieval-enhanced data augmentation framework for sequential recommendation[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2022: 2923-2932.
|
2 |
ZHOU K, WANG H, WEN J R, et al. Enhancing multi-view smoothness for sequential recommendation models. ACM Transactions on Information Systems, 2023, 41(4): 1- 27.
|
3 |
HE R N, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]//Proceedings of the IEEE International Conference on Data Mining(ICDM). Washington D. C., USA: IEEE Press, 2016: 191-200.
|
4 |
RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York. USA: ACM Press, 2010: 811-820.
|
5 |
KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the IEEE International Conference on Data Mining(ICDM). Washington D. C., USA: IEEE Press, 2018: 197-206.
|
6 |
汪雨竹, 彭涛, 朱蓓蓓, 等. 基于元学习的小样本知识图谱补全. 吉林大学学报(理学版), 2023, 61(3): 623- 630.
|
|
WANG Y Z, PENG T, ZHU B B, et al. Few-shot knowledge graph completion based on meta learning. Journal of Jilin University(Science Edition), 2023, 61(3): 623- 630.
|
7 |
QIU R H, HUANG Z, YIN H Z. Memory augmented multi-instance contrastive predictive coding for sequential recommendation[C]//Proceedings of the IEEE International Conference on Data Mining(ICDM). Washington D. C., USA: IEEE Press, 2021: 519-528.
|
8 |
NI S, ZHOU W, WEN J H, et al. Enhancing sequential recommendation with contrastive Generative Adversarial Network. Information Processing & Management, 2023, 60(3): 103331.
|
9 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.
doi: 10.1145/3422622
|
10 |
LIU M Y, TUZEL O. Coupled generative adversarial networks. Advances in Neural Information Processing Systems, 2016, 29.
|
11 |
BHARADHWAJ H, PARK H, LIM B Y. RecGAN: recurrent generative adversarial networks for recommendation systems[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2018: 372-376.
|
12 |
WANG J, YU L T, ZHANG W N, et al. IRGAN: a minimax game for unifying generative and discriminative information retrieval models[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2017: 515-524.
|
13 |
CHAE D K, KANG J S, KIM S W, et al. CFGAN: a generic collaborative filtering framework based on generative adversarial networks[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2018: 137-146.
|
14 |
REN R Y, LIU Z Y, LI Y L, et al. Sequential recommendation with self-attentive multi-adversarial network[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 89-98.
|
15 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112- 1119.
|
16 |
WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 950-958.
|
17 |
BAI J M, HUANG X, LI M, et al. KSR: knowledge-based sequential news recommendation system. IOP Conference Series: Materials Science and Engineering, 2020, 799(1): 012042.
|
18 |
梁小慧, 郭晟楠, 万怀宇. 基于自适应小波分解的时间序列分类方法. 计算机工程, 2022, 48(4): 81-88, 98.
doi: 10.19678/j.issn.1000-3428.0061110
|
|
LIANG X H, GUO S N, WAN H Y. Time series classification method based on adaptive wavelet decomposition. Computer Engineering, 2022, 48(4): 81-88, 98.
doi: 10.19678/j.issn.1000-3428.0061110
|
19 |
许凤, 杨兴耀, 于炯, 等. 小波卷积增强的对比学习推荐算法. 计算机工程, 2023, 49(5): 105-111, 121.
doi: 10.19678/j.issn.1000-3428.0064747
|
|
XU F, YANG X Y, YU J, et al. Wavelet convolution enhanced contrastive learning recommendation algorithm. Computer Engineering, 2023, 49(5): 105-111, 121.
doi: 10.19678/j.issn.1000-3428.0064747
|
20 |
SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans, USA: Association for Computational Linguistics, 2018: 464-468.
|
21 |
|
22 |
|
23 |
HIDASI B, QUADRANA M, KARATZOGLOU A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2016: 241-248.
|
24 |
TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2018: 565-573.
|
25 |
LI J C, WANG Y J, MCAULEY J. Time interval aware self-attention for sequential recommendation[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2020: 322-330.
|
26 |
MAO K, ZHU J, WANG J, et al. SimpleX: a simple and strong baseline for collaborative filtering[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 1243-1252.
|
27 |
ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference. New York, USA: ACM Press, 2022: 2388-2399.
|