| 1 |
GUO H Y , YANG X , WANG N N , et al. A CenterNet++ model for ship detection in SAR images. Pattern Recognition, 2021, 112, 107787.
doi: 10.1016/j.patcog.2020.107787
|
| 2 |
周金涛, 高迪驹, 刘志全. 基于全景视觉的无人船水面障碍物检测方法. 计算机工程, 2024, 50 (2): 113- 121.
doi: 10.19678/j.issn.1000-3428.0067238
|
|
ZHOU J T , GAO D J , LIU Z Q . Detection method of water-surface obstacles for unmanned ships based on panoramic vision. Computer Engineering, 2024, 50 (2): 113- 121.
doi: 10.19678/j.issn.1000-3428.0067238
|
| 3 |
CHEN B J , YU C R , ZHAO S , et al. An anchor-free method based on transformers and adaptive features for arbitrarily oriented ship detection in SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 2012- 2028.
doi: 10.1109/JSTARS.2023.3325573
|
| 4 |
徐昌贵, 张波, 高建威, 等. FCOSR: 一种无锚框的SAR图像任意朝向船舶目标检测网络. 雷达学报, 2022, 11 (3): 335- 346.
|
|
XU C G , ZHANG B , GAO J W , et al. FCOSR: an anchor-free method for arbitrary-oriented ship detection in SAR images. Journal of Radars, 2022, 11 (3): 335- 346.
|
| 5 |
|
|
|
| 6 |
TANG X , ZHANG J F , XIA Y Z , et al. DBW-YOLO: a high-precision SAR ship detection method for complex environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 7029- 7039.
doi: 10.1109/JSTARS.2024.3376558
|
| 7 |
刘涛, 杨子渊, 蒋燕妮, 等. 极化SAR图像舰船目标检测研究综述. 雷达学报, 2021, 10 (1): 1- 19.
|
|
LIU T , YANG Z Y , JIANG Y N , et al. Review of ship detection in polarimetric synthetic aperture imagery. Journal of Radars, 2021, 10 (1): 1- 19.
|
| 8 |
宋志娜, 李莎, 杨建明, 等. 基于特征与区域定位增强的遥感舰船目标检测. 计算机工程, 2023, 49 (8): 257- 264.
doi: 10.19678/j.issn.1000-3428.0065425
|
|
SONG Z N , LI S , YANG J M , et al. Remote sensing ship target detection based on feature and region localization enhancement. Computer Engineering, 2023, 49 (8): 257- 264.
doi: 10.19678/j.issn.1000-3428.0065425
|
| 9 |
CHEN P , ZHOU H , LI Y , et al. A novel deep learning network with deformable convolution and attention mechanisms for complex scenes ship detection in SAR images. Remote Sensing, 2023, 15 (10): 2589.
doi: 10.3390/rs15102589
|
| 10 |
LIU S , CHEN P F , ZHANG Y D . A multiscale feature pyramid SAR ship detection network with robust background interference. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 9904- 9915.
doi: 10.1109/JSTARS.2023.3325376
|
| 11 |
BAI L , YAO C , YE Z , et al. Feature enhancement pyramid and shallow feature reconstruction network for SAR ship detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 1042- 1056.
doi: 10.1109/JSTARS.2022.3230859
|
| 12 |
ZHANG X H , FENG S J , ZHAO C X , et al. MGSFA-Net: multiscale global scattering feature association network for SAR ship target recognition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 4611- 4625.
doi: 10.1109/JSTARS.2024.3357171
|
| 13 |
YE H J , CHEN W M , WANG D Y , et al. A method for nearshore vessel target detection in SAR imagery utilizing edge characteristics and augmented global information amplification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 8766- 8778.
doi: 10.1109/JSTARS.2024.3389210
|
| 14 |
CHEN J Y , WU Y M , GAO X , et al. DPFF-Net: dual-polarization image feature fusion network for SAR ship detection. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3317143.
|
| 15 |
XIE N S , ZHANG T , GUO W W , et al. Dual branch deep network for ship classification of dual-polarized SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1- 15.
|
| 16 |
WANG S Y , CAI Z C , YUAN J Y . Automatic SAR ship detection based on multifeature fusion network in spatial and frequency domains. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3267495.
|
| 17 |
SUN Z Z , LENG X G , ZHANG X H , et al. Ship recognition for complex SAR images via dual-branch transformer fusion network. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 3398013.
|
| 18 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 779-788.
|
| 19 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
| 20 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6568-6577.
|
| 21 |
YI J R, WU P X, LIU B, et al. Oriented object detection in aerial images with box boundary-aware vectors[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2021: 2149-2158.
|
| 22 |
刘鑫, 刘辉, 强振平, 等. 混合高斯模型和帧间差分相融合的自适应背景模型. 中国图象图形学报, 2008, 13 (4): 729- 734.
|
|
LIU X , LIU H , QIANG Z P , et al. Adaptive background modeling based on mixture Gaussian model and frame subtraction. Journal of Image and Graphics, 2008, 13 (4): 729- 734.
|
| 23 |
赵杨宇, 李倩文, 姚丙君, 等. 基于深度可逆网络和差分编码的图像隐藏. 计算机工程, 2024, 50 (11): 318- 326.
doi: 10.19678/j.issn.1000-3428.0068578
|
|
ZHAO Y Y , LI Q W , YAO B J , et al. Image hiding based on deep invertible networks and differential encoding. Computer Engineering, 2024, 50 (11): 318- 326.
doi: 10.19678/j.issn.1000-3428.0068578
|
| 24 |
汪斌. 基于概率统计模型的复杂杂波背景下雷达目标检测方法研究[D]. 西安: 西安电子科技大学, 2019.
|
|
WANG B. Research on radar target detection method in complex chaotic background based on probability and statistical model[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2019. (in Chinese)
|
| 25 |
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3974-3983.
|
| 26 |
|
| 27 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 5562-5570.
|
| 28 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 9626-9635.
|
| 29 |
DING J, XUE N, LONG Y, et al. Learning RoI Transformer for oriented object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 2844-2853.
|
| 30 |
HAN J M, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 2785-2794.
|
| 31 |
XIE X X, CHENG G, WANG J B, et al. Oriented RCNN for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 3500-3509.
|
| 32 |
LI W T, CHEN Y J, HU K X, et al. Oriented RepPoints for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 1819-1828.
|
| 33 |
|
| 34 |
|