摘要: ID3算法采用一种对属性进行逐层的搜索和比较的“贪婪算法思想”。基于ID3算法的层间不相关性,该文考虑了生成树中相邻层的耦合,提出了一种改进的ID3的决策树算法(E-ID3),E-ID3算法使用一种基于“统计出局部最优”的方法,获得比较好的启发式函数算法,并分析了E-ID3“算两步,走一步”的思想。实验证明,该优化算法对于构建决策树具有很好的效率。
关键词:
决策树,
ID3,
E-ID3,
加权熵
Abstract: Traditionally, the algorithm of ID3 is a “greedy” algorithm which searches and compares the attribute of each level in the decision tree. Based on the unrelativity among different levels, this article brings out an improved algorithm called E-ID3. It use a method of “compute two steps and exectue one step”, which can give a good suggestion. Experimental results show it has better efficiency than ID3 when building up decision tree.
Key words:
decision tree,
ID3,
E-ID3,
weighted entropy
中图分类号:
鲁 为;王 枞. 决策树算法的优化与比较[J]. 计算机工程, 2007, 33(16): 189-190.
LU Wei; WANG Cong. Optimization and Comparison of Decision Tree Algorithm[J]. Computer Engineering, 2007, 33(16): 189-190.