[1] XIONG C Y, DAI Z Y, CALLAN J, et al.End-to-end neural ad-hoc ranking with kernel pooling[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2017:55-64. [2] MENG Y T, DAI X Y, YAN X, et al.PMD:an optimal transportation-based user distance for recommender systems[M].Berlin, Germany:Springer, 2020. [3] INDYK P, MOTWANI R.Approximate nearest neighbors:towards removing the curse of dimensionality[C]//Proceedings of the 30th Annual ACM Symposium on Theory of Computing.New York, USA:ACM Press, 1998:604-613. [4] WEBER R, SCHEK H J, BLOTT S.A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[C]//Proceedings of the 24th International Conference on Very Large Data Bases.San Francisco, USA:Morgan Kaufmann Publishers Inc., 1998:194-205. [5] CLARKSON K L.An algorithm for approximate closest-point queries[C]//Proceedings of the 10th Annual Symposium on Computational Geometry.New York, USA:ACM Press, 1994:160-164. [6] LI C L, ZHANG M J, ANDERSEN D G, et al.Improving approximate nearest neighbor search through learned adaptive early termination[C]//Proceedings of 2020 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2020:2539-2554. [7] GONG L, WANG H, OGIHARA M, et al.IDEC:indexable distance estimating codes for approximate nearest neighbor search[J].Proceedings of the VLDB Endowment, 2020, 13(9):1483-1497. [8] DATAR M, IMMORLICA N, INDYK P, et al.Locality-sensitive hashing scheme based on p-stable distributions[C]//Proceedings of the 20th Annual Symposium on Computational Geometry.New York, USA:ACM Press, 2004:253-262. [9] BENTLEY J L.Multidimensional binary search trees used for associative searching[J].Communications of the ACM, 1975, 18(9):509-517. [10] MUJA M, LOWE D G.Scalable nearest neighbor algorithms for high dimensional data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11):2227-2240. [11] JÉGOU H, DOUZE M, SCHMID C.Product quantization for nearest neighbor search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1):117-128. [12] BABENKO A, LEMPITSKY V.The inverted multi-index[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6):1247-1260. [13] FU C, WANG C X, CAI D.High dimensional similarity search with satellite system graph:efficiency, scalability, and unindexed query compatibility[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8):4139-4150. [14] WANG J D, LI S P.Query-driven iterated neighborhood graph search for large scale indexing[C]//Proceedings of the 20th ACM International Conference on Multimedia.New York, USA:ACM Press, 2012:179-188. [15] WANG M Z, XU X L, YUE Q, et al.A comprehensive survey and experimental comparison of graph-based approximate nearest neighbor search[J].Proceedings of the VLDB Endowment, 2021, 14(11):1964-1978. [16] FU C, XIANG C, WANG C, et al.Fast approximate nearest neighbor search with the navigating spreading-out graph[J].Proceedings of the VLDB Endowment, 2019, 12(5):461-474. [17] SUBRAMANYA S J, DEVVRIT F, SIMHADRI H V, et al.DiskANN:fast accurate billion-point nearest neighbor search on a single node[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2019:13766-13776. [18] MALKOV Y A, YASHUNIN D A.Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4):824-836. [19] TAN S L, XU Z Z, ZHAO W J, et al.Norm adjusted proximity graph for fast inner product retrieval[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2021:1552-1560. [20] FRIEDMAN J H.Greedy function approximation:a gradient boosting machine[J].The Annals of Statistics, 2001, 29(5):1189-1232. [21] CHEN Q, ZHAO B, WANG H, et al.SPANN:highly-efficient billion-scale approximate nearest neighborhood search[C]//Proceedings of Advances in Neural Information Processing Systems.[S.l.]:Curran Associates, Inc., 2021:34-45. [22] ABDELKADER A, ARYA S, DA FONSECA G D, et al.Approximate nearest neighbor searching with non-Euclidean and weighted distances[C]//Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms.New York, USA:ACM Press, 2019:355-372. [23] AUMÜLLER M, BERNHARDSSON E, FAITHFULL A.ANN-benchmarks:a benchmarking tool for approximate nearest neighbor algorithms[EB/OL].[2022-03-14].https://github.com/erikbern/ann-benchmarks#evaluated. [24] ARTHUR D, VASSILVITSKII S.k-means++:the advantages of careful seeding[EB/OL].[2022-03-14].http://ilpubs.stanford.edu:8090/778/. [25] SCHUBERT E, ZIMEK A.Same-size k-means tutorials[EB/OL].[2022-03-14].https://elki-project.github.io/tutorial/same-size_k_means. |