作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (11): 209-211.

• 人工智能及识别技术 • 上一篇    下一篇

一种求解TSP问题的演化算法

孙光福,李程俊,张冬梅,贺 幸   

  1. (中国地质大学计算机学院,武汉 430074)
  • 收稿日期:2010-12-08 出版日期:2011-06-05 发布日期:2011-06-05
  • 作者简介:孙光福(1988-),男,本科生,主研方向:演化计算; 李程俊,讲师;张冬梅,副教授;贺 幸,本科生
  • 基金资助:
    国家自然科学基金资助项目(40972206)

Evolutionary Algorithm for Solving Traveling Salesman Problem

SUN Guang-fu, LI Cheng-jun, ZHANG Dong-mei, HE Xing   

  1. (School of Computer, China University of Geosciences, Wuhan 430074, China)
  • Received:2010-12-08 Online:2011-06-05 Published:2011-06-05

摘要: 针对IGT算法在求解旅行商问题(TSP)中存在的求解规模较小、求解成功概率较低等问题,通过改进原有映射算子及Inver-over算子并引入求异算子,提出一种新的求解TSP问题的演化算法。方差对比及T-test结果表明,与IGT算法相比,该算法可以求得概率较高的最优解,且稳定性也更好。

关键词: TSP问题, 演化算法, 距离近邻表, 求异算子

Abstract: In order to solve the problem of low rate of success and small scale, by amending the original mapping operator and Inver-over operator and introducing differing operator, a new Evolutionary Algorithm(EA) to Traveling Salesman Problem(TSP) is got. According to the experimental results, the algorithm can find all instances’ optimal solution of experiments and the probability of getting the optimal solution is higher, while the IGT algorithm can only get that of partial instances. Comparison of variances shows the new algorithms is more stable and the T-test also shows the full advantages of the new algorithm.

Key words: Traveling Salesman Problem(TSP), Evolutionary Algorithm(EA), distance neighbor tabulation, differing operator

中图分类号: