作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (9): 235-239,251. doi: 10.19678/j.issn.1000-3428.0058387

• 图形图像处理 • 上一篇    下一篇

基于深度多特征融合的自适应CNN图像分类算法

李伟1, 黄鹤鸣1, 武风英2, 张会云1   

  1. 1. 青海师范大学 计算机学院, 西宁 810008;
    2. 青海省基础测绘院, 西宁 810001
  • 收稿日期:2020-05-21 修回日期:2020-07-29 发布日期:2020-09-11
  • 作者简介:李伟(1986-),女,博士研究生,主研方向为图像处理、模式识别、智能系统;黄鹤鸣,教授、博士;武风英,工程师;张会云,博士研究生。
  • 基金资助:
    国家自然科学基金(61462072,61662062);青海省自然科学基金(2016-ZJ-904)。

Adaptive CNN-based Image Classification Algorithm Based on Deep Fusion of Multi-Feature

LI Wei1, HUANG Heming1, WU Fengying2, ZHANG Huiyun1   

  1. 1. School of Computer Science and Technology, Qinghai Normal University, Xining 810008, China;
    2. Qinghai Basic Surveying and Mapping Institute, Xining 810001, China
  • Received:2020-05-21 Revised:2020-07-29 Published:2020-09-11

摘要: 为更好地提取图像内容信息,提高图像分类精度,提出一种自适应卷积神经网络(CNN)图像分类算法。通过融合图像的主颜色特征,利用CNN提取空间位置特征,且针对多特征融合权重值的设定问题,运用改进的差分演化算法优化各特征权值,提高固定权值分类精确度。实验结果表明,该算法分类精度相比CNN算法提升了9.2个百分点,在图像分类中具有较好的分类效果。

关键词: 卷积神经网络, 自适应权重, 数据融合, 差分演化算法, 图像分类

Abstract: To improve the accuracy of image information extraction and image classification, an adaptive Convolutional Neural Network(CNN)-based algorithm is proposed for image classification.The algorithm effectively integrates the main color features of the image, and the spatial position features are extracted by using CNN.For the setting of the weight value of multi-features fusion, an improved differential evolution algorithm is presented to optimize the feature weight, so the accuracy of classification using fixed weight is improved.Experimental results show that the algorithm provides excellent image classification results, and its classification accuracy is 9.2% higher than that of CNN.

Key words: Convolutional Neural Network(CNN), adaptive weight, data fusion, differential evolution algorithm, image classification

中图分类号: