[1] 周飞燕, 金林鹏, 董军.卷积神经网络研究综述[J].计算机学报, 2017, 40(6):1229-1251. ZHOU F Y, JIN L P, DONG J.Review of convolutional neural network[J].Chinese Journal of Computers, 2017, 40(6):1229-1251.(in Chinese) [2] LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. [3] GU J, WANG Z, KUEN J, et al.Recent advances in convolutional neural networks[J].Pattern Recognition, 2018, 77(5):354-377. [4] 杨少戈.基于深度学习的冠脉造影图像分割[D].北京:北京邮电大学, 2019. YANG S G.Coronary angiography segmentation based on deep learning[D].Beijing:Beijing University of Posts and Telecommunications, 2019.(in Chinese) [5] 温煌璐.基于卷积神经网络的图像分类算法研究[D].乌鲁木齐:新疆大学, 2018. WEN H L.Research on image classification algorithms based on convolutional neural networks[D].Urumqi:Xinjiang University, 2018.(in Chinese) [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Proceedings of ACM NIPSʼ12.New York, USA:ACM Press, 2012:1097-1105. [7] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-9. [8] IOFFE S, SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of ACM International Conference on Machine Learning.New York, USA:ACM Press, 2015:448-456. [9] 田启川, 王满丽.深度学习算法研究进展[J].计算机工程与应用, 2019, 55(22):25-33. TIAN Q C, WANG M L.Research progress of deep learning algorithm[J].Computer Engineering and Applications, 2019, 55(22):25-33.(in Chinese) [10] KIRAN R, PRADEEP K, BHARAT B.A novel deep learning based hybrid recommender system[J].Expert Systems with Applications, 2020, 144(3):113-124. [11] PENG X, ZHANG X M, LI Y P, et al.Research on image feature extraction and retrieval algorithms based on convolutional neural network[J].Journal of Visual Communication and Image Representation, 2019, 69(1):102-115. [12] BENGIO Y, COURVILLE A, VINCENT P.Representation learning:a review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. [13] CHEN Y S, LI C Y, GHAMISI P, et al.Deep fusion of remote sensing data for accurate classification[J].IEEE Geoscience and Remote Sensing Letters, 2017, 14(8):1253-1257. [14] 刘畅. 基于大数据技术支撑的线损异常分析与线损预测研究[D]. 上海:上海交通大学, 2018.LIU C.Research on exception analysis and forecasting of line loss based on big data theory[D].Shanghai:Shanghai Jiao Tong University, 2018.(in Chinese) [15] LAMBERT J, SENER O, SAVARESE S.Deep learning under privileged information using heteroscedastic dropout[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8886-8895. [16] YAO X, XU Y.Recent advances in evolutionary computation[J].Journal of Computer Science and Technology, 2006, 21(1):1-18. [17] STORN R, PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization, 1997, 11(4):341-359. [18] LIU B, WANG L, JIN H Y.Advances in differential evolution[J].Control and Decision, 2007, 22(7):721-729. [19] ABBASS H A, SARKER R, NEWTON C.PDE:a pareto-frontier differential evolution approach for multiobjective optimization problems[C]//Proceedings of IEEE Conference on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2001:971-978. [20] LIN M, CHEN Q, YAN S.Network in network[EB/OL].[2020-04-02].https://arxiv.org/abs/1312.4400. [21] KINGMA D, BA J.Adam:a method for stochastic optimization[EB/OL].[2020-04-02].https://arxiv.org/pdf/1412.6980.pdf. |