摘要: 针对车载视频行人跟踪问题,提出一种基于粒子滤波框架下的多特征融合跟踪算法。为克服车载视频中行人运动与摄像机运动产生的非线性和非高斯性,采用基于蒙特卡罗抽样的粒子滤波跟踪算法,使用一阶自回归动态模型预测目标状态,观测模型自适应加权融合的4种互补性特征。实验结果表明,与没有粒子滤波和多特征融合的跟踪算法相比,在相同精确率水平上,该算法的召回率提高20%以上。
关键词:
粒子滤波,
特征融合,
局部二元模式,
运动平滑,
扩散距离
Abstract: This paper presents a tracking algorithm based on multi-feature fusion in the particle filter framework to solve the problem of pedestrian tracking in onboard videos. To deal with the nonlinearity and non-Gaussianity caused by the motions of the pedestrians and the cameras in onboard videos, the particle filter tracking algorithm based on Monte-Carlo sampling is employed, the targets’ states are predicted by first-order self-regression dynamic models, and the observation model is proposed to fuse four complementary features. Experimental results show that the recall of the proposed algorithm improves by more than 20% at the same precision level than the tracking algorithm without particle filter and multi-feature fusion.
Key words:
particle filter,
feature fusion,
Local Binary Pattern(LBP),
motion smoothness,
diffusion distance
中图分类号:
李锴, 冯瑞. 基于粒子滤波的多特征融合视频行人跟踪算法[J]. 计算机工程, 2012, 38(24): 141-145.
LI Jie, FENG Rui. Pedestrian Tracking Algorithm in Video of Multi-feature Fusion Based on Particle Filter[J]. Computer Engineering, 2012, 38(24): 141-145.