作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (24): 141-145. doi: 10.3969/j.issn.1000-3428.2012.24.034

• 人工智能及识别技术 • 上一篇    下一篇

基于粒子滤波的多特征融合视频行人跟踪算法

李 锴,冯 瑞   

  1. (复旦大学计算机科学技术学院媒体计算研究所,上海 201203)
  • 收稿日期:2012-03-27 修回日期:2012-04-30 出版日期:2012-12-20 发布日期:2012-12-18
  • 作者简介:李 锴(1984-),男,硕士研究生,主研方向:计算机视觉,机器学习;冯 瑞,副教授、博士
  • 基金资助:
    国家“863”计划基金资助项目(2011AA100701);上海市教育委员会科研创新基金资助项目(11CXY01);宝山区科委产学研合作基金资助项目(CXY-2010-35)

Pedestrian Tracking Algorithm in Video of Multi-feature Fusion Based on Particle Filter

LI Kai, FENG Rui   

  1. (Institute of Media Computing, School of Computer Science, Fudan University, Shanghai 201203, China)
  • Received:2012-03-27 Revised:2012-04-30 Online:2012-12-20 Published:2012-12-18

摘要: 针对车载视频行人跟踪问题,提出一种基于粒子滤波框架下的多特征融合跟踪算法。为克服车载视频中行人运动与摄像机运动产生的非线性和非高斯性,采用基于蒙特卡罗抽样的粒子滤波跟踪算法,使用一阶自回归动态模型预测目标状态,观测模型自适应加权融合的4种互补性特征。实验结果表明,与没有粒子滤波和多特征融合的跟踪算法相比,在相同精确率水平上,该算法的召回率提高20%以上。

关键词: 粒子滤波, 特征融合, 局部二元模式, 运动平滑, 扩散距离

Abstract: This paper presents a tracking algorithm based on multi-feature fusion in the particle filter framework to solve the problem of pedestrian tracking in onboard videos. To deal with the nonlinearity and non-Gaussianity caused by the motions of the pedestrians and the cameras in onboard videos, the particle filter tracking algorithm based on Monte-Carlo sampling is employed, the targets’ states are predicted by first-order self-regression dynamic models, and the observation model is proposed to fuse four complementary features. Experimental results show that the recall of the proposed algorithm improves by more than 20% at the same precision level than the tracking algorithm without particle filter and multi-feature fusion.

Key words: particle filter, feature fusion, Local Binary Pattern(LBP), motion smoothness, diffusion distance

中图分类号: