摘要: 针对车载视频行人跟踪问题,提出一种基于粒子滤波框架下的多特征融合跟踪算法。为克服车载视频中行人运动与摄像机运动产生的非线性和非高斯性,采用基于蒙特卡罗抽样的粒子滤波跟踪算法,使用一阶自回归动态模型预测目标状态,观测模型自适应加权融合的4种互补性特征。实验结果表明,与没有粒子滤波和多特征融合的跟踪算法相比,在相同精确率水平上,该算法的召回率提高20%以上。
                                                        
                                                        关键词: 
                               																				                                       粒子滤波, 
	                                                                        											                                       特征融合, 
	                                                                        											                                       局部二元模式, 
	                                                                        											                                       运动平滑, 
	                                                                        											                                       扩散距离 
	                                                                                                    
                                                                                    Abstract: This paper presents a tracking algorithm based on multi-feature fusion in the particle filter framework to solve the problem of pedestrian tracking in onboard videos. To deal with the nonlinearity and non-Gaussianity caused by the motions of the pedestrians and the cameras in onboard videos, the particle filter tracking algorithm based on Monte-Carlo sampling is employed, the targets’ states are predicted by first-order self-regression dynamic models, and the observation model is proposed to fuse four complementary features. Experimental results show that the recall of the proposed algorithm improves by more than 20% at the same precision level than the tracking algorithm without particle filter and multi-feature fusion.
                                                        	                            Key words: 
	                            																				                                       particle filter, 
	                                    	                            											                                       feature fusion, 
	                                    	                            											                                       Local Binary Pattern(LBP), 
	                                    	                            											                                       motion smoothness, 
	                                    	                            											                                       diffusion distance 
	                                    	                                                            
                                                        
                            
                                                        	
								
								中图分类号: 
								 
								
								
								                            
                            
                            
                                
                                    
                                
                                
                                    
                                        															李锴, 冯瑞. 基于粒子滤波的多特征融合视频行人跟踪算法[J]. 计算机工程, 2012, 38(24): 141-145.	
															                                                                                                        	                                                                                                                      LI  Jie, FENG  Rui. Pedestrian Tracking Algorithm in Video of Multi-feature Fusion Based on Particle Filter[J]. Computer Engineering, 2012, 38(24): 141-145.