| 1 | 李林静, 李高阳, 谢秋涛. 毒蘑菇毒素的分类与识别研究进展. 中国食品卫生杂志, 2013, 25(4): 383- 387.  URL
 | 
																													
																						|  | LI L J, LI G Y, XIE Q T. Research progress on poisonous mushroom toxins classification and recognition. Chinese Journal of Food Hygiene, 2013, 25(4): 383- 387.  URL
 | 
																													
																						| 2 | GRANDSTAFF D E, TERRY D O J. Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA. Applied Geochemistry, 2009, 24(4): 733- 745.  doi: 10.1016/j.apgeochem.2008.12.027
 | 
																													
																						| 3 | ZHAO J, CAO M, ZHANG J, et al. Pathological effects of the mushroom toxin α-amanitin on BALB/c mice. Peptides, 2006, 27(12): 3047- 3052.  doi: 10.1016/j.peptides.2006.08.015
 | 
																													
																						| 4 | 桂明英, 何容, 郭永红, 等. 基于形态特征和ITS序列对新疆芦苇根蘑菇的分类鉴定. 食用菌, 2014, 36(4): 14- 16.  doi: 10.3969/j.issn.1000-8357.2014.04.008
 | 
																													
																						|  | GUI M Y, HE R, GUO Y H, et al. Classification and identification of mushrooms in reed root, Xinjiang based on morphological characteristics and ITS sequences. Edible Fungi, 2014, 36(4): 14- 16.  doi: 10.3969/j.issn.1000-8357.2014.04.008
 | 
																													
																						| 5 | 曾令奎. 毒蘑菇中毒的识别和预防. 中国林副特产, 2008,(1): 97- 98.  doi: 10.3969/j.issn.1001-6902.2008.01.045
 | 
																													
																						|  | ZENG L K. Identification and prevention of poisonous mushroom poisoning. Forest By-Product and Speciality in China, 2008,(1): 97- 98.  doi: 10.3969/j.issn.1001-6902.2008.01.045
 | 
																													
																						| 6 | 李晓旭, 刘忠源, 武继杰, 等. 小样本图像分类的注意力全关系网络. 计算机学报, 2023, 46(2): 371- 384.  URL
 | 
																													
																						|  | LI X X, LIU Z Y, WU J J, et al. Total relation network with attention for few-shot image classification. Chinese Journal of Computers, 2023, 46(2): 371- 384.  URL
 | 
																													
																						| 7 | 石进, 徐杨, 曹斌. 基于自适应三线性池化网络的细粒度图像分类. 计算机工程, 2023, 49(5): 239-246, 254.  doi: 10.19678/j.issn.1000-3428.0064396
 | 
																													
																						|  | SHI J, XU Y, CAO B. Fine-grained image categorization based on adaptive trilinear pooling network. Computer Engineering, 2023, 49(5): 239-246, 254.  doi: 10.19678/j.issn.1000-3428.0064396
 | 
																													
																						| 8 | 白尚旺, 王梦瑶, 胡静, 等. 多区域注意力的细粒度图像分类网络. 计算机工程, 2024, 50(1): 271- 278.  doi: 10.19678/j.issn.1000-3428.0066426
 | 
																													
																						|  | BAI S W, WANG M Y, HU J, et al. Multi-region attention network for fine-grained image classification. Computer Engineering, 2024, 50(1): 271- 278.  doi: 10.19678/j.issn.1000-3428.0066426
 | 
																													
																						| 9 | 沈若兰, 黄英来, 温馨, 等. 基于Xception与ResNet50模型的蘑菇分类方法. 黑河学院学报, 2020, 11(7): 181- 184.  doi: 10.3969/j.issn.1674-9499.2020.07.061
 | 
																													
																						|  | SHEN R L, HUANG Y L, WEN X, et al. Mushroom classification based on Xception and ResNet50 models. Journal of Heihe University, 2020, 11(7): 181- 184.  doi: 10.3969/j.issn.1674-9499.2020.07.061
 | 
																													
																						| 10 | 陈德刚, 艾孜尔古丽, 尹鹏博, 等. 基于改进Xception迁移学习的野生菌种类识别研究. 激光与光电子学进展, 2021, 58(8): 0810023.  URL
 | 
																													
																						|  | CHEN D G, AZRAGUL, YIN P B, et al. Research on identification of wild mushroom species based on improved Xception transfer learning. Laser & Optoelectronics Progress, 2021, 58(8): 0810023.  URL
 | 
																													
																						| 11 | WULANDARI M, KUSUMANINGTYAS E M, BARAKBAH POLITEKNIK A R. Identification of poisonous fungi basidiomycota macro based on mobile device using neural network[C]//Proceedings of International Electronics Symposium on Knowledge Creation and Intelligent Computing. Washington D. C., USA: IEEE Press, 2018: 146-151. | 
																													
																						| 12 | KISS N, CZUNI L. Mushroom image classification with CNNs: a case-study of different learning strategies[C]//Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis. Washington D. C., USA: IEEE Press, 2021: 165-170. | 
																													
																						| 13 | HUANG S L, XU Z, TAO D C, et al. Part-stacked CNN for fine-grained visual categorization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1173-1182. | 
																													
																						| 14 | WEI X S, XIE C W, WU J X, et al. Mask-CNN: localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recognition, 2018, 76, 704- 714.  doi: 10.1016/j.patcog.2017.10.002
 | 
																													
																						| 15 | YANG Z, LUO T G, WANG D, et al. Learning to navigate for fine-grained classification[M]. Berlin, Germany: Springer, 2018: 438-454. | 
																													
																						| 16 | YANG S K, LIU S, YANG C, et al. Re-rank coarse classification with local region enhanced features for fine-grained image recognition[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2102.09875 . | 
																													
																						| 17 | LIU C B, XIE H T, ZHA Z J, et al. Filtration and distillation: enhancing region attention for fine-grained visual categorization. Artificial Intelligence, 2020, 34(7): 11555- 11562. | 
																													
																						| 18 | BEHERA A, WHARTON Z, HEWAGE P R P G, et al. Context-aware attentional pooling for fine-grained visual classification. Artificial Intelligence, 2021, 35(2): 929- 937. | 
																													
																						| 19 | 张志刚, 余鹏飞, 李海燕, 等. 基于多尺度特征引导的细粒度野生菌图像识别. 激光与光电子学进展, 2022, 59(12): 1210016.  URL
 | 
																													
																						|  | ZHANG Z G, YU P F, LI H Y, et al. Fine-grained image recognition of wild mushroom based on multiscale feature guide. Laser & Optoelectronics Progress, 2022, 59(12): 1210016.  URL
 | 
																													
																						| 20 | 钱嘉鑫, 余鹏飞, 李海燕, 等. 基于特征融合与注意力机制的野生菌细粒度分类. 激光与光电子学进展, 2023, 60(4): 0410004.  URL
 | 
																													
																						|  | QIAN J X, YU P F, LI H Y, et al. Fine-grained classification of wild mushrooms based on feature fusion and attention mechanism. Laser & Optoelectronics Progress, 2023, 60(4): 0410004.  URL
 | 
																													
																						| 21 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2010.11929 . | 
																													
																						| 22 | HE J, CHEN J N, LIU S, et al. TransFG: a transformer architecture for fine-grained recognition. Artificial Intelligence, 2022, 36(1): 852- 860. | 
																													
																						| 23 | 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望. 自动化学报, 2022, 48(4): 957- 979.  URL
 | 
																													
																						|  | TIAN Y L, WANG Y T, WANG J G, et al. Key problems and progress of vision Transformers: the state of the art and prospects. Acta Automatica Sinica, 2022, 48(4): 957- 979.  URL
 | 
																													
																						| 24 | YU J, TAN M, ZHANG H Y, et al. Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 563- 578.  doi: 10.1109/TPAMI.2019.2932058
 | 
																													
																						| 25 | TAN M, YU J, YU Z, et al. User-click-data-based fine-grained image recognition via weakly supervised metric learning. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(3): 1- 23. | 
																													
																						| 26 | WANG M, ZHAO P, LU X, et al. Fine-grained visual categorization: a spatial-frequency feature fusion perspective. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(6): 2798- 2812.  doi: 10.1109/TCSVT.2022.3227737
 | 
																													
																						| 27 | HU Y Q, JIN X, ZHANG Y, et al. RAMS-trans: recurrent attention multi-scale transformer for fine-grained image recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 358-367. | 
																													
																						| 28 | ZHANG Y, CAO J, ZHANG L, et al. A free lunch from ViT: adaptive attention multi-scale fusion Transformer for fine-grained visual recognition[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 3234-3238. | 
																													
																						| 29 | BRANCO P, TORGO L, RIBEIRO R P. Rebagg: resampled bagging for imbalanced regression[C]//Proceedings of the 2nd International Workshop on Learning with Imbalanced Domains: Theory and Applications. Washington D. C., USA: IEEE Press, 2018: 67-81. | 
																													
																						| 30 | TAN M, YUAN F, YU J, et al. Fine-grained image classification via multi-scale selective hierarchical biquadratic pooling. ACM Transactions on Multimedia Computing, Communications, and Applications, 2022, 18(1s): 1- 23. | 
																													
																						| 31 | 曹莹, 苗启广, 刘家辰, 等. AdaBoost算法研究进展与展望. 自动化学报, 2013, 39(6): 745- 758.  URL
 | 
																													
																						|  | CAO Y, MIAO Q G, LIU J C, et al. Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 2013, 39(6): 745- 758.  URL
 | 
																													
																						| 32 | XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1492-1500. | 
																													
																						| 33 | LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 11976-11986. | 
																													
																						| 34 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer(ViT) using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022. | 
																													
																						| 35 | TAN M, LE Q. EfficientNet-B0: rethinking model scaling for convolutional neural networks[C]// Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2019: 6105-6114. | 
																													
																						| 36 | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet_v2: practical guidelines for efficient CNN architecture design[C]// Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 122-138. | 
																													
																						| 37 | XU J, PAN Y, PAN X L, et al. RegNet: self-regulated network for image classification. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9562- 9567.  doi: 10.1109/TNNLS.2022.3158966
 | 
																													
																						| 38 | TAN M, LE Q. EfficientNetv2: smaller models and faster training[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 10096-10106. | 
																													
																						| 39 |  | 
																													
																						| 40 |  | 
																													
																						| 41 | NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]//Proceedings of the 6th IEEE Conference on Computer Vision, Graphics & Image Processing. Washington D. C., USA: IEEE Press, 2008: 722-729. |