1 |
史振宇, 符伟国. 中国血管外科的现状和展望. 上海医学, 2017, 40(3): 135- 138.
URL
|
|
SHI Z Y, FU W G. Present situation and prospect of vascular surgery in China. Shanghai Medical Journal, 2017, 40(3): 135- 138.
URL
|
2 |
KOCAMAN V, TALBY D. Accurate clinical and biomedical named entity recognition at scale. Software Impacts, 2022, 13, 100373.
doi: 10.1016/j.simpa.2022.100373
|
3 |
RABINER L, JUANG B. An introduction to hidden Markov models. IEEE ASSP Magazine, 1986, 3(1): 4- 16.
doi: 10.1109/MASSP.1986.1165342
|
4 |
CORTES C, VAPNIK V. Support-vector networks. Machine Learning, 1995, 20(3): 273- 297.
doi: 10.1023/A:1022627411411
|
5 |
JAYNES E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620- 630.
doi: 10.1103/PhysRev.106.620
|
6 |
LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. New York, USA: ACM Press, 2001: 282-289.
|
7 |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541- 551.
doi: 10.1162/neco.1989.1.4.541
|
8 |
ELMAN J. Finding structure in time. Cognitive Science, 1990, 14(2): 179- 211.
doi: 10.1207/s15516709cog1402_1
|
9 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
10 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: Association for Computational Linguistics, 2014: 1724-1734.
|
11 |
LIN Y F, TSAI T H, CHOU W C, et al. A maximum entropy approach to biomedical named entity recognition[C]//Proceedings of the 4th International Conference on Data Mining in Bioinformatics. New York, USA: ACM Press, 2004: 56-61.
|
12 |
YI E, LEE G G, SONG Y, et al. SVM-based biological named entity recognition using minimum edit-distance feature boosted by virtual examples[M]. Berlin, Germany: Springer, 2005.
|
13 |
ZHAO Z H, YANG Z H, LUO L, et al. ML-CNN: a novel deep learning based disease named entity recognition architecture[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington D. C., USA: IEEE Press, 2016: 794.
|
14 |
PHAN R, LUU T M, DAVEY R, et al. Biomedical named entity recognition based on hybrid multistage CNN-RNN learner[C]//Proceedings of the International Conference on Machine Learning and Data Engineering (iCMLDE). Washington D. C., USA: IEEE Press, 2018: 128-135.
|
15 |
WU F Z, LIU J X, WU C H, et al. Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3342-3348.
|
16 |
CHANG Y, KONG L, JIA K J, et al. Chinese named entity recognition method based on BERT[C]//Proceedings of the IEEE International Conference on Data Science and Computer Application (ICDSCA). Washington D. C., USA: IEEE Press, 2021: 294-299.
|
17 |
CAI X C, SUN E H, LEI J L. Research on application of named entity recognition of electronic medical records based on BERT-IDCNN-CRF model[C]//Proceedings of the 6th International Conference on Graphics and Signal Processing. New York, USA: ACM Press, 2022: 80-85.
|
18 |
YIN X W, ZHENG S, WANG Q M. Fine-grained Chinese named entity recognition based on RoBERTa-WWM-BiLSTM-CRF model[C]//Proceedings of the 6th International Conference on Image, Vision and Computing (ICIVC). Washington D. C., USA: IEEE Press, 2021: 408-413.
|
19 |
ZHANG L, LAI P C, YE F Y, et al. Chinese medical named entity recognition using external knowledge[C]// Proceedings of the 19th Pacific Rim International Conference on Artificial Intelligence. Berlin, Germany: Springer, 2022: 359-371.
|
20 |
KONG J, ZHANG L X, JIANG M, et al. Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition. Journal of Biomedical Informatics, 2021, 116, 103737.
doi: 10.1016/j.jbi.2021.103737
|
21 |
CUI Y M, CHE W X, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, USA: Association for Computational Linguistics, 2020: 657-668.
|
22 |
STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 2670-2680.
|
23 |
梁文桐, 朱艳辉, 詹飞, 等. 基于深度学习多模型融合的医疗命名实体识别. 计算机应用与软件, 2022, 39(10): 162-168, 229.
URL
|
|
LIANG W T, ZHU Y H, ZHAN F, et al. Medical named entity recognition based on deep learning multi-model fusion. Computer Applications and Software, 2022, 39(10): 162-168, 229.
URL
|
24 |
吕江海, 杜军平, 周南, 等. 基于膨胀卷积迭代与注意力机制的实体名识别方法. 计算机工程, 2021, 47(1): 58-65, 71.
URL
|
|
LÜ J H, DU J P, ZHOU N, et al. Entity Name recognition method based on dilated convolutional iterative and attention mechanism. Computer Engineering, 2021, 47(1): 58-65, 71.
URL
|
25 |
王笑月, 李茹, 段菲. 一种基于门控空洞卷积的高效中文命名实体识别方法. 中文信息学报, 2021, 35(1): 72- 80.
URL
|
|
WANG X Y, LI R, DUAN F. An efficient Chinese named entity recognition method based on gated-dilated convolution. Journal of Chinese Information Processing, 2021, 35(1): 72- 80.
URL
|