1 |
YUAN X , BRADY D J , KATSAGGELOS A K . Snapshotcompressive imaging: theory, algorithms, and applications. IEEE Signal Processing Magazine, 2021, 38 (2): 65- 88.
doi: 10.1109/MSP.2020.3023869
|
2 |
DONOHO D L . Compressed sensing. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
3 |
CANDES E J , ROMBERG J , TAO T . Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52 (2): 489- 509.
doi: 10.1109/TIT.2005.862083
|
4 |
LIU Y , YUAN X , SUO J L , et al. Rank minimization for snapshotcompressive imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (12): 2990- 3006.
doi: 10.1109/TPAMI.2018.2873587
|
5 |
|
6 |
YUAN X , PU Y C . Parallel lenslesscompressive imaging via deep convolutional neural networks. Optics Express, 2018, 26 (2): 1962- 1977.
doi: 10.1364/OE.26.001962
|
7 |
HITOMI Y, GU J W, GUPTA M, et al. Video from a single coded exposure photograph using a learned over-complete dictionary[C]//Proceedings of the International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2011: 287-294.
|
8 |
LLULL P , LIAO X J , YUAN X , et al. Coded aperturecompressive temporal imaging. Optics Express, 2013, 21 (9): 10526- 10545.
doi: 10.1364/OE.21.010526
|
9 |
TIAN C W , ZHANG X Y , ZHANG Q , et al. Image super-resolution via dynamic network. CAAI Transactions on Intelligence Technology, 2024, 9 (4): 837- 849.
doi: 10.1049/cit2.12297
|
10 |
陈天宇, 楚程钱, 万思远, 等. 基于条件轻量级神经网络的视频入侵检测算法. 计算机工程, 2023, 49 (12): 152- 160.
URL
|
|
CHEN T Y , CHU C Q , WAN S Y , et al. Video intrusion detection algorithm based on conditional lightweight neural network. Computer Engineering, 2023, 49 (12): 152- 160.
URL
|
11 |
LIAO X J , LI H , CARIN L . Generalized alternating projection for weighted-2, 1 minimization with applications to model-basedcompressive sensing. SIAM Journal on Imaging Sciences, 2014, 7 (2): 797- 823.
doi: 10.1137/130936658
|
12 |
BOYD S . Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2010, 3 (1): 100- 122.
|
13 |
YUAN X. Generalized alternating projection based total variation minimization forcompressive sensing[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Washington D.C., USA: IEEE Press, 2016: 2539-2543.
|
14 |
YANG J B , LIAO X J , YUAN X , et al. Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Transactions on Image Processing, 2015, 24 (1): 106- 119.
doi: 10.1109/TIP.2014.2365720
|
15 |
MA C, ZHOU J T, ZHANG X, et al. Deep unfolding forcompressed sensing with denoiser[C]//Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Washington D.C., USA: IEEE Press, 2022: 1-6.
|
16 |
刘玉红, 陈满银, 刘晓燕. 基于通道注意力的多尺度全卷积压缩感知重构. 计算机工程, 2022, 48 (12): 189- 195.
URL
|
|
LIU Y H , CHEN M Y , LIU X Y . Multi-scale fully convolutionalcompressed sensing reconstruction based on channel attention. Computer Engineering, 2022, 48 (12): 189- 195.
URL
|
17 |
潘金凤, 尹丽菊, 高明亮, 等. 压缩感知观测信号的低秩稀疏分解. 计算机工程, 2022, 48 (8): 234- 239.
URL
|
|
PAN J F , YIN L J , GAO M L , et al. Low-rank and sparse decomposition ofcompressive sensing observation signals. Computer Engineering, 2022, 48 (8): 234- 239.
URL
|
18 |
ZHOU Y , CHEN Y , ZHANG X , et al. A lightweight recurrent learning network for sustainablecompressed sensing. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8 (5): 3214- 3227.
doi: 10.1109/TETCI.2023.3271322
|
19 |
ZHOU Y , KWONG S , GUO H N , et al. A two-phase evolutionary approach forcompressive sensing reconstruction. IEEE Transactions on Cybernetics, 2017, 47 (9): 2651- 2663.
doi: 10.1109/TCYB.2017.2679705
|
20 |
CHENG Z H, LU R Y, WANG Z J, et al. BIRNAT: bidirectional recurrent neural networks with adversarial training for video snapshotcompressive imaging[C]//Proceedings of European Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 258-275.
|
21 |
QIAO M , MENG Z Y , MA J W , et al. Deep learning for videocompressive sensing. APL Photonics, 2020, 5 (3): 030801.
doi: 10.1063/1.5140721
|
22 |
CHENG Z H, CHEN B, LIU G L, et al. Memory-efficient network for large-scale videocompressive sensing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 16241-16250.
|
23 |
|
24 |
XU X J , SUN Y , LIU J M , et al. Provable convergence of plug-and-play priors with MMSE denoisers. IEEE Signal Processing Letters, 2020, 27, 1280- 1284.
doi: 10.1109/LSP.2020.3006390
|
25 |
LI T C , YAN Q R , ZOU Q , et al. Gates-controlled deep unfolding network for imagecompressed sensing. IEEE Transactions on Computational Imaging, 2024, 10, 103- 114.
doi: 10.1109/TCI.2024.3354423
|
26 |
QIU C X , HU X M . AdaCS: adaptivecompressive sensing with restricted isometry property-based error-clamping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (7): 4702- 4719.
doi: 10.1109/TPAMI.2024.3357704
|
27 |
YUAN X, LIU Y, SUO J L, et al. Plug-and-play algorithms for large-scale snapshotcompressive imaging[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 1444-1454.
|
28 |
YUAN X , LIU Y , SUO J L , et al. Plug-and-play algorithms for video snapshotcompressive imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (10): 7093- 7111.
doi: 10.1109/TPAMI.2021.3099035
|
29 |
|
30 |
WT Z, ZHANGT J, MOU C. Dense deep unfolding network with 3D-CNN prior for snapshotcompressive imaging[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 4872-4881.
|
31 |
ZHENG S M, YANG X Y, YUAN X. Two-stage is enough: a concise deep unfolding reconstruction network for flexible videocompressive sensing[EB/OL]. [2024-01-08]. http://arxiv.org/abs/2201.05810.
|
32 |
|
33 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2024-01-08]. http://arxiv.org/abs/2010.11929.
|
34 |
TIAN C W , ZHENG M H , LI B , et al. Perceptive self-supervised learning network for noisy image watermark removal. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (8): 7069- 7079.
doi: 10.1109/TCSVT.2024.3349678
|
35 |
|
36 |
|
37 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 9992-10002.
|
38 |
|
39 |
YUAN X, LLULL P, LIAO X J, et al. Low-costcompressive sensing for color video and depth[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2014: 3318-3325.
|
40 |
ZHAO Y P, ZHENG S M, YUAN X. Deep equilibrium models for snapshotcompressive imaging[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2023: 3642-3650.
|
41 |
WANG L S , WU Z L , ZHONG Y , et al. Snapshot spectralcompressive imaging reconstruction using convolution and contextual Transformer. Photonics Research, 2022, 10 (8): 1848.
doi: 10.1364/PRJ.458231
|
42 |
WANG L S , CAO M , ZHONG Y , et al. Spatial-temporal Transformer for video snapshotcompressive imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (7): 9072- 9089.
|
43 |
WANG L S, CAO M, YUAN X. EfficientSCI: densely connected network with space-time factorization for large-scale video snapshotcompressive imaging[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 18477-18486.
|