参考文献
[1]Sun J,Faloutsos C,Papadimitriou S,et al.Graphscope:Parameter-free Mining of Large Time-evolving Graphs[C]//Proceedings of ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining.San Jose,USA:ACM Press,2007:687
-696.
[2]Telephone Traffic Data[EB/OL].(2007-10-21).http://reality.media.mit.edu/download.php.
[3]DBLP Bibliographic Data.(2009-05-06).http://www.informatik.uni-trier.de/ley/db.
[4]Tantipathananandh C,Berger-Wolf T Y,Kempe D.A Framework for Community Identification in Dynamic Social Networks[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,USA:ACM
Press,2007:717-726.
[5]Chakrabarti D,Kumar R,Tomkins A.Evolutionary Clustering[C]//Proceedings of ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining.Philadelphia,USA:ACM Press,2006:554-560.
[6]Chi Y,Song X,Zhou D,et al.Evolutionary Spectral Clustering by Incorporating Temporal Smoothness[C]// Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,USA:ACM Press,2007:153-162.
[7]Lin Y R,Chi Y,Zhu S H,et al.FaceNet:A Framework for Analyzing Communities and Their Evolutions in Dynamic Networks[C]//Proceedings of International Conference on World Wide Web.Beijing,China:[s.n],2008:685-694.
[8]Kim M S,Han J.A Particle-and-density Based Evolu-tionary Clustering Method for Dynamic Networks[J].Proceedings of the VLDB Endowment,2009,2(1):622-633.
[9]Coscia M,Rossetti G,Giannotti F,et al.Demon:A Local-first Discovery Method for Overlapping Com-munities[C]//Proceedings of ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining.Beijing,China:
[s.n.],2012:615-623.
[10]Raghavan U N,Albert R,Kumara S.Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks[J].Physical Review E,2007,76(3).
(下转第203页)
(上接第195页)
[11]Greene D,Doyle D,Cunningham P.Tracking the Evolution of Communities in Dynamic Social Net-works[C]//Proceedings of IEEE International Con-ference on Advances in Social Networks Analysis and Mining.Odense,USA:IEEE Press,2010:176-
183.
[12]Lancichinetti A,Fortunato S,Kertész J.Detecting the Overlapping and Hierarchical Community Structure in Com-plex Networks[J].New Journal of Physics,2009,11(3).
[13]付立东,高琳,马小科.基于社团检测的复杂网络中心性方法[J].中国科学(信息科学),2012,42(5):550-560.
[14]姜雅文,贾彩燕,于剑.基于节点相似度的网络社团检测算法研究[J].计算机科学,2011,38(7):185-189.
[15]易三莉,苗莹,钱洁,等.基于感兴趣区域的边缘结构相似度图像质量评估[J].计算机工程,2015,41(6):216-220.
[16]杨建新,周献中,葛银茂.基于拉普拉斯图谱和K均值的多社团发现方法[J].计算机工程,2008,34(12):178-180.
[17]王观玉.基于聚类的复杂网络社团发现算法[J].计算机工程,2011,37(10):58-60.
[18]Fortunato S.Community Detection in Graphs[J].Physics Reports,2010,486(3):75-174.
[19]Huang Jianbin,Sun Heli,Han Jiawei,et al.SHRINK:A Structural Clustering Algorithm for Detecting Hierarchical Communities in Networks[C]//Pro-ceedings of the 19th ACM International Conference on Information and Knowledge
Management.Toronto,Canada:ACM Press,2010:219-228.
[20]Kumar R,Novak J,Raghavan P,et al.On the Bursty Evolution of Blogspace[J].World Wide Web,2005,8(2):159-178.
[21]Leskovec J,Kleinberg J,Faloutsos C.Graphs over Time:Densification Laws,Shrinking Diameters and Possible Explanations[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.Chicago,USA:ACM
Press,2005:177-187.
[22]Palla G,Barabási A L,Vicsek T.Quantifying Social Group Evolution[J].Nature,2007,446(7136):664-667.
[23]Yang T,Chi Y,Zhu S,et al.A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks[C]//Proceedings of SIAM International Conference on Data mining.Sparks,USA:SIAM,2009:990-1001.
[24]Cuzzocrea A,Folino F.Community Evolution Detection in Time-evolving Information[C]//Proceedings of Joint EDBT/ICDT’13 Workshops.Genoa,Italy:ACM Press,2013:93-96.
[25]Tang L,Liu H,Zhang J,et al.Community Evolution in Dynamic Multi-mode Networks[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Las Vegas,USA:ACM Press,2008:677-685.
编辑索书志 |