[1] PEROZZI B, AL-RFOU R, SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2014:701-710. [2] BOURIGAULT S, LAMPRIER S, GALLINARI P.Representation learning for information diffusion through social networks:an embedded cascade model[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2016:573-582. [3] LI C, MA J Q, GUO X X, et al.DeepCas:an end-to-end predictor of information cascades[C]//Proceedings of the 26th International Conference on World Wide Web.New York, USA:ACM Press, 2017:577-586. [4] JOLLIFFE I T.Pincipal component analysis[J].Journal of Marketing Research, 2002, 25(4):513-521. [5] BELKIN M, NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Systems.New York, USA:ACM Press, 2001:585-591. [6] GROVER A, LESKOVEC J.Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:855-864. [7] YANG C, LIU Z Y, ZHAO D L, et al.Network representation learning with rich text information[EB/OL].[2021-11-10].https://www.semanticscholar.org/paper/Network-Representation-Learning-with-Rich-Text-Yang-Liu/fce14c6aa64e888456256ac6796744683165a0ff. [8] YAO W, KUMAR A, ROLIA J, et al.A context-aware framework for patient navigation and engagement[C]//Proceedings of the 8th IEEE International Conference on Collaborative Computing:Networking, Applications and Worksharing.Washington D.C., USA:IEEE Press, 2012:316-325. [9] TU C C, ZHANG W C, LIU Z Y, et al.Max-margin deepwalk:discriminative learning of network representation[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2016.3889-3895. [10] GOYAL P, KAMRA N, HE X R, et al.DynGEM:deep embedding method for dynamic graphs[EB/OL].[2021-11-10].https://arxiv.org/abs/1805.11273. [11] LIU W Q, LI H X, XIE B.Real-time graph partition and embedding of large network[C]//Proceedings of the18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.Washington, USA:IEEE Press, 2018:432-441. [12] WANG Q, YU Y H, GAO H Y, et al.Network representation learning enhanced recommendation algorithm[J].IEEE Access, 2019(7):61388-61399. [13] XIONG Y, ZHANG Y, FU H J, et al.DynGraphGAN:dynamic graph embedding via generative adversarial networks[C]//Proceedings of International Conference on Database Systems for Advanced Applications.Berlin, Germany:Springer, 2019:536-552. [14] GOYAL P.Dyngraph2vec:capturing network dynamics using dynamic graph representation learning[J].Knowledge-Based Systems, 2020, 187(1):104816-104822. [15] TRIVEDI R, FARAJTABAR M, BISWAL P, et al.DyRep:learning representations over dynamic graphs[EB/OL].[2021-11-10].https://arxiv.org/abs/1803.04051. [16] FRIEDKIN N E.Information flow through strong and weak ties in intraorganizational social networks[J].Social Networks, 1982, 3(4):273-285. [17] KEUCHENIUS A, TÖRNBERG P, UITERMARK J.Adoption and adaptation:a computational case study of the spread of Granovetter's weak ties hypothesis[J].Social Networks, 2021, 66(7):10-25. [18] 宾宁, 冼文峰, 胡凤.基于强弱关系的社交网络信息传播博弈模型[J].现代情报, 2016, 36(12):30-35. BIN N, XIAN W F, HU F.Game model of information transmission in social networks:based on strong and weak relationship theory[J].Journal of Modern Information, 2016, 36(12):30-35.(in Chinese) [19] Social evolution dataset.[EB/OL].[2021-11-10].http://realitycommons.media.mit.edu/socialevolution.html. [20] GH Archive.[EB/OL].[2021-11-10].https://www.gharchive.org. [21] KNYAZEV B, AUGUSTA C, TAYLOR G W.Learning temporal attention in dynamic graphs with bilinear interactions[J].PLoS One, 2021, 16(3):36-45. [22] KONG C, CHEN B, LI S, et al.D2NE:deep dynamic network embedding[C]//Proceedings of International Conference on Advanced Data Mining and Applications. Berlin, Germany:Springer, 2020:168-175. [23] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2021-11-10].https://arxiv.org/abs/1412.6980. [24] HAMILTON W L, YING R, LESKOVEC J.Inductive representation learning on large graphs[EB/OL].[2021-11-10].https://arxiv.org/abs/1706.02216. [25] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].[2021-11-10].https://arxiv.org/abs/1710.10903. [26] TRIVEDI R, DAI H J, WANG Y C, et al.Know-Evolve:deep temporal reasoning for dynamic knowledge graphs[EB/OL].[2021-11-10].https://arxiv.org/abs/1705.05742. |