[1] TU Cunchao,YANG Cheng,LIU Zhiyuan,et al.Network representation learning:an overview[J].Scientia Sinica Informationis,2017,47(8):980-996.(in Chinese)涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学(信息科学),2017,47(8):980-996. [2] BHAGAT S,CORMODE G,MUTHUKRISHNAN S.Node classification in social networks[J].Computer Science,2011,16(3):115-148. [3] GOYAL P,FERRARA E.Graph embedding techniques,applications,and performance:a survey[EB/OL].[2020-05-14].https://arxiv.org/abs/1705.02801. [4] CUI Peng,WANG Xiao,PEI Jian,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(5):833-852. [5] OU Mingdong,CUI Peng,PEI Jian,et al.Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1105-1114. [6] WANG Xiao,CUI Peng,WANG Jing,et al.Community preserving network embedding[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2017:203-209. [7] PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:701-710. [8] GROVER A,LESKOVEC J.Node2Vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:855-864. [9] WANG Daixin,CUI Peng,ZHU Wenwu.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1225-1234. [10] CAO Shaosheng,LU Wei,XU Qiongkai.Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2016:1145-1152. [11] PEROZZI B,KULKARNI V,SKIENA S.Walklets:multiscale graph embeddings for interpretable network classification[EB/OL].[2020-05-14].https://arxiv.org/abs/1605.02115. [12] DONG Y,CHAWLA N V,SWAMI A.Metapath2Vec:scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2017:135-144. [13] KHOSHRAFTAR S,MAHDAVI S,AN A,et al.Dynamic graph embedding via LSTM history tracking[C]//Proceedings of 2019 IEEE International Conference on Data Science and Advanced Analytics.Washington D.C.,USA:IEEE Press,2019:119-127. [14] GOYAL P,KAMRA N,HE X R,et al.DynGEM:deep embedding method for dynamic graphs[EB/OL].[2020-05-14].https://arxiv.org/abs/1805.11273. [15] NGUYEN G H,LEE J B,ROSSI R A,et al.Continuous-time dynamic network embeddings[C]//Proceedings of International Conferences on World Wide Web.Geneva,Switzerland:International World Wide Web Conferences Steering Committee,2018:969-976. [16] PANDHRE S,MITTAL H,GUPTA M,et al.STWalk:learning trajectory representations in temporal graphs[C]//Proceedings of ACM India Joint International Conference on Data Science and Management of Data.New York,USA:ACM Press,2018:210-219. [17] CHENG X,JI L,YIN Y,et al.Network representation learning method based on spatial-temporal graph in dynamic network[C]//Proceedings of IEEE International Conference on Electronics Information and Emergency Communication.Washington D.C.,USA:IEEE Press,2019:196-200. [18] LEE J B,NGUYEN G,ROSSI R A,et al.Temporal network representation learning[EB/OL].[2020-05-14].https://arxiv.org/abs/1904.06449. [19] NGUYEN G H,LEE J B,ROSSI R A,et al.Dynamic network embeddings:from random walks to temporal random walks[C]//Proceedings of IEEE International Conference on Big Data.Washington D.C.,USA:IEEE Press,2018:1085-1092. [20] DALEY D J,KENDALL D G.Epidemics and rumours[J].Nature,1964,204(4963):1118. [21] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2013:3111-3119. [22] MAATEN L J,HINTON G E.Visualizing high-dimensional data using t-SNE[J].Journal of Machine Learning Research,2008,9(2):2579-2605. |