[1] LIAO Lizi,HE Xiangnan,ZHANG Hanwang,et al.Attributed social network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(12):2257-2270. [2] LI Bo,ZHENG Chunhou,HUANG Deshuang,et al.Gene expression data classification using locally linear discriminant embedding[J].Computers in Biology and Medicine,2010,40(10):802-810. [3] GROVER A,LESKOVEC J.Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:855-864. [4] OU Mingdogn,CUI Peng,PEI Jian,et al.Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1105-1114. [5] WANG Daixin,CUI Peng,ZHU Wenwu.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1225-1234. [6] ZHANG Li,WANG Hong,MA Xingfu.Community evolution mining in dynamic social network[J].Computer Engineering,2013,39(6):47-51.(in Chinese)臧丽,王红,马兴福.动态社会网络中的社区演变挖掘[J].计算机工程,2013,39(6):47-51. [7] WANG Lunwen,ZHANG Ling.A method of finding the shortest path of dynamic networks[J].Journal of System Simulation,2018,30(3):1189-1194.(in Chinese)王伦文,张铃.动态网络最短程求解技术研究[J].系统仿真学报,2018,30(3):1189-1194. [8] ZHU Linhong,GUO Dong,YIN Junming,et al.Scalable temporal latent space inference for link prediction in dynamic social networks[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(10):2765-2777. [9] YU W,CHENG W,AGGARWAL C C,et al.Link prediction with spatial and temporal consistency in dynamic networks[C]//Proceedings of International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2017:3343-3349. [10] ZHU Dingyuan,CUI Peng,ZHANG Ziwei,et al.High-order proximity preserved embedding for dynamic networks[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(11):2134-2144. [11] PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:701-710. [12] ZHOU Lekui,YANG Yang,REN Xiang,et al.Dynamic network embedding by modeling triadic closure process[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press,2018:571-578. [13] GOYAL P,KAMRA N,HE X,et al.DynGEM:deep embedding method for dynamic graphs[EB/OL].[2018-12-10].https://www.researchgate.net/. [14] XIAONG Yun,ZHANG YAO,FU Hanjie,et al.DynGraphGAN:dynamic graph embedding via generative adversarial networks[C]//Proceedings of International Conference on Database Systems for Advanced Applications.Berlin,Germany:Springer,2019:215-226. [15] QI Fangpeng,WANG Tong,ZHOU Mingyang,et al.Link prediction in dynamical networks based on mutual information[J].Journal of University of Science and Technology of China,2018,48(6):440-446.(in Chinese)齐方鹏,王童,周明洋,等.基于互信息的动态网络链路预测算法研究[J].中国科学技术大学学报,2018,48(6):440-446. [16] CAI Bosi,CHEN Xiang.Reseach on Weibo community discovery based on behavior similarity[J].Computer Engineering,2013,39(8):55-59.(in Chinese)蔡波斯,陈翔.基于行为相似度的微博社区发现研究[J].计算机工程,2013,39(8):55-59. [17] VISWANATH B,MISLOVE A,CHA M,et al.On the evolution of user interaction in facebook[C]//Proceedings of the 2nd ACM Workshop on Online Social Networks.New York,USA:ACM Press,2009:37-42. [18] MASSA P,AVESANI P.Trust-aware bootstrapping of recommender systems[C]//Proceedings of ECAI Workshop on Recommender Systems.Washington D.C.,USA:IEEE Press,2006:29-33. [19] HOGG T,LERMAN K.Social dynamics of Digg[J].EPJ Data Science,2012,1(1):5. [20] RANSHOUS S,SHEN S,KOUTRA D,et al.Anomaly detection in dynamic networks:a survey[J].Computational Statistics,2015,7(3):223-247. |