参考文献 [1]张迪,霍妍.云计算技术在医院信息化中的应用[J].信息技术,2011(5):171-173. [2]张小庆.基于云计算环境的资源提供优化方法研究[D].武汉:武汉理工大学,2013. [3]陈运安.负载均衡技术的实现以及策略[J].电信技术,2012(S1):72-74. [4]ADHIKARI J,PATIL S.Double Threshold Energy Aware Load Balancing in Cloud Computing[C]//Proceedings of IEEE International Conference on Computing.Washington D.C.,USA:IEEE Press,2013:1-6. [5]张晋芳,王清心,丁家满,等.一种云计算环境下大数据动态迁移策略[J].计算机工程,2016,42(5):13-17. [6]LIN C C,CHIN H H,DENG D J.Dynamic Multiservice Load Balancing in Cloud-based Multimedia System[J].IEEE Systems Journal,2014,8(1):225-234. (下转第54页) (上接第41页) [7]杨单,李超锋,杨健.基于改进混沌萤火虫算法的云计算资源调度[J].计算机工程,2015,41(2):17-20,25. [8]张水平,邬海艳.基于元胞自动机遗传算法的云资源调度[J].计算机工程,2012,38(11):11-13. [9]HUANG H,PAN M,GONG S.Estimating and Calibrating the Response of Multiple Wideband Digital Radio Frequency Memories in a Hardware-in-the-loop System Using Shuffled frog Leaping Algorithm[J].IET Radar,Sonar & Navigation,2016,10(5):827-833. [10]BARATI M,FARSANGI M M.Solving Unit Commitment Problem by a Binary Shuffled Frog Leaping Algorithm[J].IET Generation Transmission & Distribution,2014,8(6):1050-1060. [11]HASANIEN H M.Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification[J].IEEE Transactions on Sustainable Energy,2015,6(2):509-515. [12]HU B,DAI Y,SU Y.Feature Selection for Optimized High-dimensional Biomedical Data Using the Improved Shuffled Frog Leaping Algorithm[J].ACM Transactions on Computational Biology and Bioinformatics,2014,99(3):1-1. [13]WANG F,GENG C,SU L.Parameter Identification and Prediction of Jiles-Atherton Model for DC-based Transformer Using Improved Shuffled Frog Leaping Algorithm and Least Square Support Vector Machine[J].IET Electric Power Applications,2015,9(9):660-669. [14]张潇丹,赵力,邹采荣.一种改进的混合蛙跳算法求解有约束优化问题[J].山东大学学报(工学版),2013,43(1):1-8. [15]刘立群,王联国,韩俊英.基于全局共享因子的混合蛙跳算法[J].计算机工程,2013,39(10):162-166. [16]欧阳,孙元姝.基于改进混合蛙跳算法的网格任务调度策略[J].计算机工程,2011,37(21):146-148. [17]龙腾,孙辉,赵嘉.基于改进蛙跳算法的WSN移动节点部署研究[J].计算机工程,2012,38(5):96-98. 编辑索书志 |