作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (4): 168-168.

• 人工智能及识别技术 • 上一篇    下一篇

粒子群优化算法的硬件实现及其性能分析

蔡 瑞,须文波,柴志雷,王 斌,刘 凡   

  1. (江南大学信息工程学院,无锡 214122)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2010-02-20 发布日期:2010-02-20

Hardware Implementation and Capability Analysis of Particle Swarm Optimization Algorithm

CAI Rui, XU Wen-bo, CHAI Zhi-lei, WANG Bin, LIU Fan   

  1. (School of Information Engineering, Jiangnan University,Wuxi 214122)
  • Received:1900-01-01 Revised:1900-01-01 Online:2010-02-20 Published:2010-02-20

摘要: 介绍量子粒子群优化(QPSO)算法的硬件实现方法并对其进行性能分析。将QPSO算法应用于现场可编程门阵列开发板,并对比了不同硬件实现方式的运算速度和资源耗费。采用硬件并行和流水技术缩短算法的运算时间,仿真结果表明,硬件化QPSO的运算时间为原Matlab中运算时间的0.032%。

关键词: 量子粒子群优化, 现场可编程门阵列, 硬件实现

Abstract: This paper introduces the hardware implementation of Quantum-behaved Particle Swarm Optimization(QPSO) algorithm and analyses its capability. The algorithm runs in FPGA. The operation speed and resource using with hardware implementation methods are compared. The pipeline technology shortens the runtime enormously. Simulation result indicates that runtime of Field Programmable Gate Array(FPGA) based QPSO achieves about 0.032% of runtime on Matlab.

Key words: Quantum-behaved Particle Swarm Optimization(QPSO), Field Programmable Gate Array(FPGA), hardware implementation

中图分类号: