[1] HOROWITZ M.1.1 Computing's energy problem(and what we can do about it)[C]//Proceedings of 2014 IEEE International Solid-State Circuits Conference.Washington D.C., USA:IEEE Press, 2014:10-14. [2] CHUA L.Memristor-the missing circuit element[J].IEEE Transactions on Circuit Theory, 1971, 18(5):507-519. [3] SHAO Y S, XI S L, SRINIVASAN V, et al.Co-designing accelerators and SoC interfaces using gem5-Aladdin[C]//Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture.Washington D.C., USA:IEEE Press, 2016:1-12. [4] BINKERT N, BECKMANN B, BLACK G, et al.The gem5 simulator[J].ACM SIGARCH Computer Architecture News, 2011, 39(2):1-7. [5] LUO T, WANG X, QU C P, et al.An FPGA-based hardware emulator for neuromorphic chip with RRAM[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(2):438-450. [6] TOLBA M F, HALAWANI Y, SALEH H, et al.FPGA-based memristor emulator circuit for binary convolutional neural networks[J].IEEE Access, 2020, 8:117736-117745. [7] WONG H S P, LEE H Y, YU S M, et al.Metal-oxide RRAM[J].Proceedings of the IEEE, 2012, 100(6):1951-1970. [8] JI Y, ZHANG Y Y, XIE X F, et al.FPSA:a full system stack solution for reconfigurable ReRAM-based NN accelerator architecture[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems.Washington D.C., USA:IEEE Press, 2019:733-747. [9] SHAFIEE A, NAG A, MURALIMANOHAR N, et al.ISAAC:a convolutional neural network accelerator with in-situ analog arithmetic in crossbars[J].ACM SIGARCH Computer Architecture News, 2016, 44(3):14-26. [10] HAN J H, LIU H, WANG M Y, et al.ERA-LSTM:an efficient ReRAM-based architecture for long short-term memory[J].IEEE Transactions on Parallel and Distributed Systems, 2020, 31(6):1328-1342. [11] ANKIT A, HAJJ I E, CHALAMALASETTI S R, et al.PUMA:a programmable ultra-efficient memristor-based accelerator for machine learning inference[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems.Washington D.C., USA:IEEE Press, 2019:715-731. [12] WANG Y T, CHEN F, SONG L H, et al.ReBoc:accelerating block-circulant neural networks in ReRAM[C]//Proceedings of 2020 Design, Automation & Test in Europe Conference & Exhibition.Washington D.C., USA:IEEE Press, 2020:1472-1477. [13] CHEN Y J, CHEN T S, XU Z W, et al.DianNao family:energy-efficient hardware accelerators for machine learning[J].Communications of the ACM, 2016, 59(11):105-112. [14] AMBROSI J, ANKIT A, ANTUNES R, et al.Hardware-software co-design for an analog-digital accelerator for machine learning[C]//Proceedings of 2018 IEEE International Conference on Rebooting Computing.Washington D.C., USA:IEEE Press, 2018:1-13. [15] LIU S L, DU Z D, TAO J H, et al.Cambricon:an instruction set architecture for neural networks[C]//Proceedings of the 43rd Annual International Symposium on Computer Architecture.Washington D.C., USA:IEEE Press, 2016:393-405. [16] ANKIT A, HAJJ I E, CHALAMALASETTI S R, et al.PANTHER:a programmable architecture for neural network training harnessing energy-efficient ReRAM[J].IEEE Transactions on Computers, 2020, 69(8):1128-1142. [17] AMBROGIO S, BALATTI S, CUBETA A, et al.Statistical fluctuations in HfOx resistive-switching memory:part I-set/reset variability[J].IEEE Transactions on Electron Devices, 2014, 61(8):2912-2919. [18] ZHANG S H, ZHANG G L, LI B, et al.Aging-aware lifetime enhancement for memristor-based neuromorphic computing[C]//Proceedings of 2019 Design, Automation & Test in Europe Conference & Exhibition.Washington D.C., USA:IEEE Press, 2019:1751-1756. [19] XIA L X, LI B X, TANG T Q, et al.MNSIM:simulation platform for memristor-based neuromorphic computing system[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(5):1009-1022. [20] PENG X C, HUANG S S, LUO Y D, et al.DNN+NeuroSim:an end-to-end benchmarking framework for compute-in-memory accelerators with versatile device technologies[C]//Proceedings of 2019 IEEE International Electron Devices Meeting.Washington D.C., USA:IEEE Press, 2019:1-4. |