1 |
FENG G Y, QIN Y B, HUANG R Z, et al. Criminal action graph: a semantic representation model of judgement documents for legal charge prediction. Information Processing & Management, 2023, 60 (5): 103421.
URL
|
2 |
李婷, 秦永彬, 黄瑞章, 等. 基于神经网络的中文谓语动词识别研究. 数据采集与处理, 2020, 35 (3): 582- 590.
doi: 10.16337/j.1004-9037.2020.03.020
|
|
LI T, QIN Y B, HUANG R Z, et al. Research on Chinese predicate verb recognition based on neural network. Data Acquisition and Processing, 2020, 35 (3): 582- 590.
doi: 10.16337/j.1004-9037.2020.03.020
|
3 |
李琳, 赵维纳. 基于词向量特征的藏语谓语动词短语识别模型. 电子技术与软件工程, 2019, 8 (4): 242- 243.
URL
|
|
LI L, ZHAO W N. Tibetan predicate verb phrase recognition model based on word vector features. Electronic Technology & Software Engineering, 2019, 8 (4): 242- 243.
URL
|
4 |
SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2843-2849.
|
5 |
|
6 |
XU M B, JIANG H, WATCHARAWITTAYAKUL S. A local detection approach for named entity recognition and mention detection[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2017: 1237-1247.
|
7 |
REN W Q, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 154-169.
|
8 |
穗志方, 俞士汶. 面向EBMT的汉语单句谓语中心词识别研究. 中文信息学报, 1998, 12 (4): 40- 47.
URL
|
|
SUI Z F, YU S W. The research on recognizing the predicate head of a Chinese simple sentence in EBMT. Journal of Chinese Information Processing, 1998, 12 (4): 40- 47.
URL
|
9 |
罗振声, 郑碧霞. 汉语句型自动分析和分布统计算法与策略的研究. 中文信息学报, 1994, 8 (2): 1- 19.
URL
|
|
LUO Z S, ZHENG B X. An approach to the automatic analysis and frequence statistics of Chinese sentence patterns. Journal of Chinese Information Processing, 1994, 8 (2): 1- 19.
URL
|
10 |
李国臣, 孟静. 利用主语和谓语的句法关系识别谓语中心词. 中文信息学报, 2005, 19 (1): 1-7, 41.
doi: 10.3969/j.issn.1003-0077.2005.01.001
|
|
LI G C, MENG J. A method of identifying the predicate head based on the correspondence between the subject and the predicate. Journal of Chinese Information Processing, 2005, 19 (1): 1-7, 41.
doi: 10.3969/j.issn.1003-0077.2005.01.001
|
11 |
韩磊, 罗森林, 潘丽敏, 等. 融合词法和句法特征的汉语谓词高精度识别方法. 浙江大学学报(工学版), 2014, 48 (12): 2107-2114, 2195.
URL
|
|
HAN L, LUO S L, PAN L M, et al. High accuracy Chinese predicate recognition method combining lexical and syntactic feature. Journal of Zhejiang University (Engineering Science), 2014, 48 (12): 2107-2114, 2195.
URL
|
12 |
黄瑞章, 靳文繁, 陈艳平, 等. 基于Highway-BiLSTM网络的汉语谓语中心词识别研究. 通信学报, 2021, 42 (1): 100- 107.
doi: 10.11959/j.issn.1000-436x.2021027
|
|
HUANG R Z, JIN W F, CHEN Y P, et al. Research on Chinese predicate head recognition based on Highway-BiLSTM network. Journal on Communications, 2021, 42 (1): 100- 107.
doi: 10.11959/j.issn.1000-436x.2021027
|
13 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-08-14]. http://arxiv.org/abs/1810.04805.
|
14 |
LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[EB/OL]. []. http://arxiv.org/abs/1909.11942.
|
15 |
|
16 |
SUN Z J, LI X Y, SUN X F, et al. ChineseBERT: Chinese pretraining enhanced by glyph and pinyin information[EB/OL]. [2023-08-14]. http://arxiv.org/abs/2106.16038.
|
17 |
郭晓, 陈艳平, 唐瑞雪, 等. 边界回归的谓语中心词识别. 计算机工程与应用, 2023, 59 (22): 144- 150.
doi: 10.3778/j.issn.1002-8331.2208-0298
|
|
GUO X, CHEN Y P, TANG R X, et al. Predicate head identification based on boundary regression. Computer Engineering and Applications, 2023, 59 (22): 144- 150.
doi: 10.3778/j.issn.1002-8331.2208-0298
|
18 |
尚千壹, 陈艳平, 黄瑞章, 等. 基于回归的唯一谓语中心词识别. 计算机工程与设计, 2023, 44 (4): 1213- 1219.
URL
|
|
SHANG Q Y, CHEN Y P, HUANG R Z, et al. Regression identifies a unique predicate central word. Computer Engineering and Design, 2023, 44 (4): 1213- 1219.
URL
|
19 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Washington D. C., USA: IEEE Press, 2011: 315-323.
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
谢腾, 杨俊安, 刘辉. 基于BERT-BiLSTM-CRF模型的中文实体识别. 计算机系统应用, 2020, 29 (7): 48- 55.
URL
|
|
XIE T, YANG J A, LIU H. Chinese entity recognition based on BERT-BiLSTM-CRF model. Computer Systems & Applications, 2020, 29 (7): 48- 55.
URL
|
25 |
|
26 |
|