1 |
刘理, 宁立伟. 高校学生评教的制度正义及其实现. 中国高教研究, 2022, (8): 84- 89.
URL
|
|
LIU L, NING L W. The institutional justice of college students' teaching evaluation and its realization. China Higher Education Research, 2022, (8): 84- 89.
URL
|
2 |
田园, 宫婷婷. 基于LDA模型的在线教学需求数据主题挖掘研究. 情报科学, 2021, 39 (9): 110- 116.
URL
|
|
TIAN Y, GONG T T. Topic mining of online teaching demand data based on LDA model. Information Science, 2021, 39 (9): 110- 116.
URL
|
3 |
王军, 王彩霞. 高校通识课教学质量影响因素及提升路径研究——基于学生评教文本的分析. 中国高教研究, 2020, (8): 98- 103.
URL
|
|
WANG J, WANG C X. Influential factors and approaches to improvements for college general education: an textual analysis based on SET. China Higher Education Research, 2020, (8): 98- 103.
URL
|
4 |
刘家银, 印杰, 牛博威, 等. 海量网站中博彩类违法网站的捕获方法. 数据采集与处理, 2021, 36 (5): 1050- 1061.
URL
|
|
LIU J Y, YIN J, NIU B W, et al. Capture methods of gambling related illegal websites in massive websites. Journal of Data Acquisition and Processing, 2021, 36 (5): 1050- 1061.
URL
|
5 |
赵丹丹, 黄德根, 孟佳娜, 等. 基于BERT-GRU-ATT模型的中文实体关系分类. 计算机科学, 2022, 49 (6): 319- 325.
URL
|
|
ZHAO D D, HUANG D G, MENG J N, et al. Chinese entity relations classification based on BERT-GRU-ATT. Computer Science, 2022, 49 (6): 319- 325.
URL
|
6 |
REN J S, WU W, LIU G, et al. Bidirectional gated temporal convolution with attention for text classification. Neurocomputing, 2021, 455, 265- 273.
doi: 10.1016/j.neucom.2021.05.072
|
7 |
李卫疆, 漆芳, 余正涛. 基于多通道特征和自注意力的情感分类方法. 软件学报, 2021, 32 (9): 2783- 2800.
URL
|
|
LI W J, QI F, YU Z T. Sentiment classification method based on multi-channel features and self-attention. Journal of Software, 2021, 32 (9): 2783- 2800.
URL
|
8 |
郭贤伟, 赖华, 余正涛, 等. 融合情绪知识的案件微博评论情绪分类. 计算机学报, 2021, 44 (3): 564- 578.
URL
|
|
GUO X W, LAI H, YU Z T, et al. Emotion classification of case-related microblog comments integrating emotional knowledge. Chinese Journal of Computers, 2021, 44 (3): 564- 578.
URL
|
9 |
LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[C]//Proceedings of the 8th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 1-17.
|
10 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
11 |
LEI T, ZHANG Y, WANG S I, et al. Simple recurrent units for highly parallelizable recurrence[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 4470-4481.
|
12 |
REN Y, HAN J F, LIN Y C, et al. An ontology-based and deep learning-driven method for extracting legal facts from Chinese legal texts. Electronics, 2022, 11 (12): 1821.
|
13 |
LIU H T, CHEN G, LI P P, et al. Multi-label text classification via joint learning from label embedding and label correlation. Neurocomputing, 2021, 460, 385- 398.
|
14 |
GAN C Q, FENG Q D, ZHANG Z F. Scalable multi-channel dilated CNN-BiLSTM model with attention mechanism for Chinese textual sentiment analysis. Future Generation Computer Systems, 2021, 118, 297- 309.
doi: 10.1016/j.future.2021.01.024
|
15 |
MINAEE S, KALCHBRENNER N, CAMBRIA E, et al. Deep learning—based text classification: a comprehensive review. ACM Computing Surveys, 2022, 54 (3): 1- 40.
|
16 |
GUNTER K, THOMAS U, ANDREAS M, et al. Self-normalizing neural networks[C]//Proceedings of Conference of Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 972-981.
|
17 |
ZHANG J, ZHANG P, KONG B W, et al. Continuous self-attention models with neural ODE networks[C]//Proceedings of AAAI Conference on Artificial Intellgence. [S. l.]: AAAI Press, 2022: 14393-14401.
|
18 |
YANG T C, HU L M, SHI C, et al. HGAT: heterogeneous graph attention networks for semi-supervised short text classification. ACM Transactions on Information Systems, 2021, 39 (3): 22- 32.
|
19 |
王曙燕, 原柯. 基于RoBERTa-WWM的大学生论坛情感分析模型. 计算机工程, 2022, 48 (8): 292-298, 305.
URL
|
|
WANG S Y, YUAN K. Sentiment analysis model of college student forum based on RoBERTa-WWM. Computer Engineering, 2022, 48 (8): 292-298, 305.
URL
|
20 |
REUSCH A, THIELE M, LEHNER W. An ALBERT-based similarity measure for mathematical answer retrieval[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 1593-1597.
|
21 |
LIU L Y, JIANG H M, GE P C, et al. On the variance of the adaptive learning rate and beyond [C]//Proceedings of the 8th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 467-477.
|
22 |
ABASI A K, KHADER A T, AL-BETAR M A, et al. An ensemble topic extraction approach based on optimization clusters using hybrid multi-verse optimizer for scientific publications. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (2): 2765- 2801.
doi: 10.1007/s12652-020-02439-4
|
23 |
PENG H, LI J X, WANG S Z, et al. Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (6): 2505- 2519.
doi: 10.1109/TKDE.2019.2959991
|
24 |
SHARMA R, SHRIVASTAVA S, KUMAR SINGH S, et al. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Briefings in Bioinformatics, 2021, 22 (5): 65- 78.
doi: 10.1093/bib/bbab065
|
25 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2022-09-20]. https://arxiv.org/abs/1810.04805.
|
26 |
|