1 |
ZHANG K, LENG S P, HE Y J, et al. Mobile edge computing and networking for green and low-latency Internet of Things. IEEE Communications Magazine, 2018, 56(5): 39- 45.
doi: 10.1109/MCOM.2018.1700882
|
2 |
CHEN S Z, HU J L, SHI Y, et al. LTE-V: a TD-LTE-based V2X solution for future vehicular network. IEEE Internet of Things Journal, 2016, 3(6): 997- 1005.
doi: 10.1109/JIOT.2016.2611605
|
3 |
HOU X W, REN Z Y, WANG J J, et al. Reliable computation offloading for edge-computing-enabled software-defined IoV. IEEE Internet of Things Journal, 2020, 7(8): 7097- 7111.
doi: 10.1109/JIOT.2020.2982292
|
4 |
YUAN Y, YI C Y, CHEN B, et al. A computation offloading game for jointly managing local pre-processing time-length and priority selection in edge computing. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9868- 9883.
doi: 10.1109/TVT.2022.3177432
|
5 |
SHI Y, YI C Y, CHEN B, et al. Joint online optimization of data sampling rate and preprocessing mode for edge-cloud collaboration-enabled industrial IoT. IEEE Internet of Things Journal, 2022, 9(17): 16402- 16417.
doi: 10.1109/JIOT.2022.3150386
|
6 |
王妍, 葛海波, 冯安琪. 云辅助移动边缘计算中的计算卸载策略. 计算机工程, 2020, 46(8): 27- 34.
doi: 10.19678/j.issn.1000-3428.0055845
|
|
WANG Y, GE H B, FENG A Q. Computation offloading strategy in cloud-assisted mobile edge computing. Computer Engineering, 2020, 46(8): 27- 34.
doi: 10.19678/j.issn.1000-3428.0055845
|
7 |
MACH P, BECVAR Z. Mobile edge computing: a survey on architecture and computation offloading. IEEE Communications Surveys[WT《Times New Roman》]& Tutorials, 2017, 19(3): 1628- 1656.
|
8 |
|
9 |
LUO Q Y, LI C L, LUAN T H, et al. Collaborative data scheduling for vehicular edge computing via deep reinforcement learning. IEEE Internet of Things Journal, 2020, 7(10): 9637- 9650.
doi: 10.1109/JIOT.2020.2983660
|
10 |
MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective. IEEE Communications Surveys[WT《Times New Roman》]& Tutorials, 2017, 19(4): 2322- 2358.
|
11 |
施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望. 计算机研究与发展, 2019, 56(1): 69- 89.
|
|
SHI W S, ZHANG X Z, WANG Y F, et al. Edge computing: state-of-the-art and future directions. Journal of Computer Research and Development, 2019, 56(1): 69- 89.
|
12 |
HOU X S, LI Y, CHEN M, et al. Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology, 2016, 65(6): 3860- 3873.
doi: 10.1109/TVT.2016.2532863
|
13 |
JANG I, CHOO S, KIM M, et al. The software-defined vehicular cloud: a new level of sharing the road. IEEE Vehicular Technology Magazine, 2017, 12(2): 78- 88.
doi: 10.1109/MVT.2017.2665718
|
14 |
|
15 |
DAI Y Y, XU D, MAHARJAN S, et al. Joint load balancing and offloading in vehicular edge computing and networks. IEEE Internet of Things Journal, 2019, 6(3): 4377- 4387.
doi: 10.1109/JIOT.2018.2876298
|
16 |
CHENG X, CHEN C, ZHANG W X, et al. 5G-enabled cooperative intelligent vehicular (5GenCIV) framework: when benz meets marconi. IEEE Intelligent Systems, 2017, 32(3): 53- 59.
doi: 10.1109/MIS.2017.53
|
17 |
ZHAN W H, LUO C B, WANG J, et al. Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing. IEEE Internet of Things Journal, 2020, 7(6): 5449- 5465.
doi: 10.1109/JIOT.2020.2978830
|
18 |
WU Y L, WU J G, CHEN L, et al. Efficient task scheduling for servers with dynamic states in vehicular edge computing. Computer Communications, 2020, 150, 245- 253.
doi: 10.1016/j.comcom.2019.11.019
|
19 |
LI J L, LUO G Y, CHENG N, et al. An end-to-end load balancer based on deep learning for vehicular network traffic control. IEEE Internet of Things Journal, 2019, 6(1): 953- 966.
doi: 10.1109/JIOT.2018.2866435
|
20 |
KIM M S, LEE S. Enhanced network mobility management for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1329- 1340.
doi: 10.1109/TITS.2015.2504122
|
21 |
WANG Y P, LANG P, TIAN D X, et al. A game-based computation offloading method in vehicular multiaccess edge computing networks. IEEE Internet of Things Journal, 2020, 7(6): 4987- 4996.
doi: 10.1109/JIOT.2020.2972061
|
22 |
DE SOUZA A B, LEAL REGO P A, DE SOUZA J N. Exploring computation offloading in vehicular clouds[C]//Proceedings of the 8th IEEE International Conference on Cloud Networking. Washington D.C., USA: IEEE Press, 2019: 1-4.
|
23 |
BUTE M S, FAN P Z, ZHANG L, et al. An efficient distributed task offloading scheme for vehicular edge computing networks. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13149- 13161.
doi: 10.1109/TVT.2021.3117847
|
24 |
HUANG X M, YU R, LIU J Q, et al. Parked vehicle edge computing: exploiting opportunistic resources for distributed mobile applications. IEEE Access, 2018, 6, 66649- 66663.
doi: 10.1109/ACCESS.2018.2879578
|
25 |
JIANG Z Y, ZHOU S, GUO X Y, et al. Task replication for deadline-constrained vehicular cloud computing: optimal policy, performance analysis, and implications on road traffic. IEEE Internet of Things Journal, 2018, 5(1): 93- 107.
doi: 10.1109/JIOT.2017.2771473
|
26 |
SUN F, HOU F, CHENG N, et al. Cooperative task scheduling for computation offloading in vehicular cloud. IEEE Transactions on Vehicular Technology, 2018, 67(11): 11049- 11061.
doi: 10.1109/TVT.2018.2868013
|
27 |
WANG X J, NING Z L, WANG L. Offloading in Internet of vehicles: a fog-enabled real-time traffic management system. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4568- 4578.
doi: 10.1109/TII.2018.2816590
|
28 |
SUN Y X, ZHOU S, NIU Z S. Distributed task replication for vehicular edge computing: performance analysis and learning-based algorithm. IEEE Transactions on Wireless Communications, 2021, 20(2): 1138- 1151.
doi: 10.1109/TWC.2020.3030889
|
29 |
WANG J H, ZHU K, CHEN B, et al. Distributed clustering-based cooperative vehicular edge computing for real-time offloading requests. IEEE Transactions on Vehicular Technology, 2022, 71(1): 653- 669.
doi: 10.1109/TVT.2021.3122001
|
30 |
杨天, 杨军. MEC中卸载决策与资源分配的深度强化学习方法. 计算机工程, 2021, 47(8): 37- 44.
doi: 10.19678/j.issn.1000-3428.0058730
|
|
YANG T, YANG J. Deep reinforcement learning method of offloading decision and resource allocation in MEC. Computer Engineering, 2021, 47(8): 37- 44.
doi: 10.19678/j.issn.1000-3428.0058730
|
31 |
|
32 |
ZHU H B, WU Q, WU X J, et al. Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning. IEEE Internet of Things Journal, 2022, 9(14): 12770- 12782.
doi: 10.1109/JIOT.2021.3138434
|
33 |
ZHOU Z Y, LIU P J, FENG J H, et al. Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3113- 3125.
doi: 10.1109/TVT.2019.2894851
|
34 |
LIU C H, LIU K, REN H L, et al. RtDS: real-time distributed strategy for multi-period task offloading in vehicular edge computing environment. Neural Computing and Applications, 2023, 35(17): 12373- 12387.
doi: 10.1007/s00521-021-05766-5
|
35 |
XU L M, YANG Z X, WU H Q, et al. Socially driven joint optimization of communication, caching, and computing resources in vehicular networks. IEEE Transactions on Wireless Communications, 2022, 21(1): 461- 476.
doi: 10.1109/TWC.2021.3096881
|
36 |
WANG X J, NING Z L, GUO S, et al. Imitation learning enabled task scheduling for online vehicular edge computing. IEEE Transactions on Mobile Computing, 2022, 21(2): 598- 611.
doi: 10.1109/TMC.2020.3012509
|
37 |
|