1 |
DUAN X Y, YIN M M, ZHANG M, et al. Zero-shot cross-lingual abstractive sentence summarization through teaching generation and attention[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3162-3172.
|
2 |
ZHU J N, WANG Q A, WANG Y N, et al. NCLS: neural cross-lingual summarization[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3054-3064.
|
3 |
ZHANG B L, NAGESH A, KNIGHT K. Parallel corpus filtering via pre-trained language models[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 8545-8554.
|
4 |
|
5 |
|
6 |
赖华, 高玉梦, 黄于欣, 等. 基于多粒度特征的文本生成评价方法. 中文信息学报, 2022, 36(3): 45-53, 63.
|
|
LAI H, GAO Y M, HUANG Y X, et al. Evaluation method of text generation based on multi-granularity features. Journal of Chinese Information Processing, 2022, 36(3): 45-53, 63.
|
7 |
DOU Z Y, KUMAR S, TSVETKOV Y. A deep reinforced model for zero-shot cross-lingual summarization with bilingual semantic similarity rewards[C]//Proceedings of the 14th Workshop on Neural Generation and Translation. Stroudsburg, USA: Association for Computational Linguistics, 2020: 60-68.
|
8 |
LEUSKI A, LIN C Y, ZHOU L A, et al. Cross-lingual C*ST*RD. ACM Transactions on Asian Language Information Processing, 2003, 2(3): 245- 269.
|
9 |
|
10 |
ORǍSAN C, CHIOREAN O A. Evaluation of a cross-lingual Romanian-English multi-document summariser[C]//Proceedings of the 6th International Conference on Language Resources and Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2008: 1-10.
|
11 |
AYANA, SHEN S Q, CHEN Y, et al. Zero-shot cross-lingual neural headline generation. ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(12): 2319- 2327.
|
12 |
ZHU J N, ZHOU Y, ZHANG J J, et al. Attend, translate and summarize: an efficient method for neural cross-lingual summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 1-10.
|
13 |
CAO Y E, LIU H, WAN X J. Jointly learning to align and summarize for neural cross-lingual summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 6220-6231.
|
14 |
BAI Y, GAO Y, HUANG H Y. Cross-lingual abstractive summarization with limited parallel resources[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 6910-6924.
|
15 |
|
16 |
YOU Y J, JIA W J, LIU T Y, et al. Improving abstractive document summarization with salient information modeling[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2132-2137.
|
17 |
|
18 |
|
19 |
YOON WONJIN, YEO Y S, JEONG M, et al. Learning by semantic similarity makes abstractive summarization better[EB/OL]. [2023-02-18]. https://arxiv.org/abs/2002. 07767.
|
20 |
HU B T, CHEN Q C, ZHU F Z. LCSTS: a large scale Chinese short text summarization dataset[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1967-1972.
|
21 |
赵红梅, 刘群. 机器翻译常见错误类型总结[C]//第十届全国机器翻译研讨会. 中国, 重庆: 中国翻译协会, 2013: 1-10.
|
|
ZHAO H M, LIU Q. Summary of common error types in machine translation[C]//Proceedings of the 10th National Machine Translation Sym-posium. Chongqing, China: Translation Association of China, 2013: 1-10. (in Chinese)
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5998-6008.
|
23 |
DYER C, CHAHUNEAU V, SMITH N A. A simple, fast, and effective reparameterization of IBM model 2 [C]//Proceedings of Conference on the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2013: 644-648.
|
24 |
RENNIE S J, MARCHERET E, MROUEH Y, et al. Self-critical sequence training for image captioning[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 7008-7024.
|
25 |
KANG X M, ZHAO Y, ZHANG J J, et al. Dynamic context selection for document-level neural machine translation via reinforcement learning[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 2242-2254.
|
26 |
WU L J, TIAN F, QIN T, et al. A study of reinforcement learning for neural machine translation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 3612-3621.
|
27 |
JAUREGI UNANUE I, PARNELL J, PICCARDI M. BERTTune: fine-tuning neural machine translation with BERTScore[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 1-10.
|