1 |
CODY R A, NARASIMHAN S. A field implementation of linear prediction for leak-monitoring in water distribution networks. Advanced Engineering Informatics, 2020, 45, 101103.
doi: 10.1016/j.aei.2020.101103
|
2 |
CHEN C, LIU H. Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning. Advanced Engineering Informatics, 2021, 48, 101290.
doi: 10.1016/j.aei.2021.101290
|
3 |
OLOYEDE A, OZUOMBA S, ASUQUO P, et al. Data-driven techniques for temperature data prediction: big data analytics approach. Environmental Monitoring and Assessment, 2023, 195 (2): 1- 21.
doi: 10.1007/s10661-023-10961-z
|
4 |
TIAN Y, ZHOU K, PELLEG D. What and how long: prediction of mobile App engagement. ACM Transactions on Information Systems, 2021, 40 (1): 1- 38.
doi: 10.1145/3464301
|
5 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 11-23.
|
6 |
XIE Y F, ZHUANG X B, XI Z P, et al. Dual-channel and bidirectional neural network for hypersonic glide vehicle trajectory prediction. IEEE Access, 2021, 9, 92913- 92924.
doi: 10.1109/ACCESS.2021.3092515
|
7 |
WANG J Y, LIN X, ZUO Y, et al. DGeye: probabilistic risk perception and prediction for urban dangerous goods management. ACM Transactions on Information Systems, 2021, 39 (3): 1- 30.
URL
|
8 |
高世乐, 王滢, 李海林, 等. 基于矩阵画像的金融时序数据预测方法. 计算机应用, 2021, 41 (1): 199- 207.
doi: 10.11772/j.issn.1001-9081.2020060877
|
|
GAO S L, WANG Y, LI H L, et al. Prediction method on financial time series data based on matrix profile. Journal of Computer Applications, 2021, 41 (1): 199- 207.
doi: 10.11772/j.issn.1001-9081.2020060877
|
9 |
刘宇. 基于海洋时序数据的温度预测与补全方法研究[D]. 长春: 吉林大学, 2020.
|
|
LIU Y. Research on temperature prediction and completion method based on marine time series data[D]. Changchun: Jilin University, 2020. (in Chinese)
|
10 |
YANG L X, GAO T, LU Y B, et al. Neural network stochastic differential equation models with applications to financial data forecasting. Applied Mathematical Modelling, 2023, 115, 279- 299.
doi: 10.1016/j.apm.2022.11.001
|
11 |
ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 1982, 50 (4): 987.
doi: 10.2307/1912773
|
12 |
BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986, 31 (3): 307- 327.
doi: 10.1016/0304-4076(86)90063-1
|
13 |
BARTHOLOMEW D J. Time series analysis forecasting and control. Journal of the Operational Research Society, 1971, 22 (2): 199- 201.
doi: 10.1057/jors.1971.52
|
14 |
|
15 |
ZHANG P, LI H, HA Q P, et al. Reinforcement learning based optimizer for improvement of predicting tunneling-induced ground responses. Advanced Engineering Informatics, 2020, 45, 101097.
doi: 10.1016/j.aei.2020.101097
|
16 |
WANG R. Prediction research and application of financial time series based on big data. Journal of Physics: Conference Series, 2021, 1881 (2): 022093.
doi: 10.1088/1742-6596/1881/2/022093
|
17 |
SAFARI A, DAVALLOU M. Oil price forecasting using a hybrid model. Energy, 2018, 148, 49- 58.
doi: 10.1016/j.energy.2018.01.007
|
18 |
|
19 |
CHENG Y, HU K, WU J, et al. A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings. Advanced Engineering Informatics, 2021, 48, 101247.
doi: 10.1016/j.aei.2021.101247
|
20 |
PAN Z Y, LIANG Y X, WANG W F, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 1720-1730.
|
21 |
MA X L, ZHANG J Y, DU B W, et al. Parallel architecture of convolutional bi-directional LSTM neural networks for network-wide metro ridership prediction. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (6): 2278- 2288.
doi: 10.1109/TITS.2018.2867042
|
22 |
WAN H, GUO S, YIN K, et al. CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowledge-Based Systems, 2020, 191, 105239.
doi: 10.1016/j.knosys.2019.105239
|
23 |
XU J J, ZHAO J, ZHOU R, et al. Predicting destinations by a deep learning based approach. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (2): 651- 666.
doi: 10.1109/TKDE.2019.2932984
|
24 |
ZHANG X, YAN M, XIE B, et al. An automatic real-time bus schedule redesign method based on bus arrival time prediction. Advanced Engineering Informatics, 2021, 48, 101295.
doi: 10.1016/j.aei.2021.101295
|
25 |
林靖皓. 基于Self-attention C-BiGRU芒果产量预测研究[D]. 南宁: 广西大学, 2019.
|
|
LIN J H. Study on mango yield prediction based on Self-attention C-BiGRU[D]. Nanning: Guangxi University, 2019. (in Chinese)
|
26 |
|
27 |
MEJIA J, SOSA L A, MEDEROS B, et al. Prediction of time series using an analysis filter bank of LSTM units. Computers & Industrial Engineering, 2021, 157, 107371.
URL
|