作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (2): 78-90. doi: 10.19678/j.issn.1000-3428.0067027

• 人工智能与模式识别 • 上一篇    下一篇

基于翻转网络的低相关性序列数据预测研究

丁国辉, 刘宇琪*(), 王言开, 耿施展, 姜天昊   

  1. 沈阳航空航天大学计算机学院, 辽宁 沈阳 110136
  • 收稿日期:2023-02-24 出版日期:2024-02-15 发布日期:2024-02-21
  • 通讯作者: 刘宇琪
  • 基金资助:
    科技部国家重点研发计划子课题(2021YFF0307500); 辽宁省自然科学基金(2021-MS-261)

Research on Low-Correlation Sequence Data Prediction Based on Flip Network

Guohui DING, Yuqi LIU*(), Yankai WANG, Shizhan GENG, Tianhao JIANG   

  1. School of Computer Science, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • Received:2023-02-24 Online:2024-02-15 Published:2024-02-21
  • Contact: Yuqi LIU

摘要:

在某些实际应用中,通常不存在与被预测时间变量具有高相关性的其他维度变量,或者这些维度变量难以采集。而具有较低相关性的时间序列数据普遍存在,其对于数据预测具有更重要的意义。提出一种基于注意力翻转网络的低相关性多维时间序列数据预测模型。针对低相关性时序数据具有相关性随时间而变化的特点,引入批处理滑动窗口以摆脱时间变化带来的干扰,更好地捕获维度相关性。针对传统门控循环单元(GRU)网络大量丢弃低相关性样本的问题,建立翻转GRU网络对低相关性多维数据进行初次过滤,控制多维数据在网络中的传递数量,避免维度变量因相关性较低而被丢弃,提升相关性较低的多维数据在模型中的存活时间。同时,利用基于维度的注意力机制自适应调整不同维度序列在相关性提取过程中的重要性。建立平方长短期记忆(LSTM)网络对分配权重后的数据进行拟合,更细致地确定相关性对被预测参数的影响。实验结果表明,该模型的决定系数可达0.95,预测性能优于GRU、LSTM等传统神经网络模型。

关键词: 时间序列数据, 深度学习, 相关性, 注意力机制, 长短期记忆网络, 门控循环单元

Abstract:

In some practical applications, there are often no other dimensional variables that highly correlate with the predicted time variable, or these dimensional variables are difficult to collect. At the same time, time series data with lower correlations are prevalent, which have more important significance for the improvement of forecasting results. Therefore, this study proposes a low-correlation multi-dimensional time series data prediction model based on attention flipping network. First, for low-correlation time series data, the correlation changes with time and a batch sliding window is introduced to remove the interference caused by time changes to better capture the dimensional correlation. Second, in view of the problem that the traditional Gated Recurrent Unit (GRU) network discards a large number of low-correlation samples, a flipped GRU network to screen low-correlation multi-dimensional data for the first time is established, the number of multi-dimensional data transmitted in the network is controlled, dimensional variables being discarded due to low-correlation is avoided, and survival time of the multi-dimensional data with low-correlation in the model is improved. Simultaneously, a dimension-based attention mechanism is used to adaptively adjust the importance of different dimension sequences in the correlation extraction process. Finally, a square Long Short-Term Memory (LSTM) network is established to fit the weighted data and determine the influence of the correlation on the predicted parameters in more detail. The experimental results show that the determination coefficient of the proposed model can reach 0.95 and its predictive performance is superior to traditional neural network models such as GRU and LSTM.

Key words: time series data, deep learning, correlation, attention mechanism, Long Short-Term Memory(LSTM) network, Gated Recurrent Unit(GRU)