1 |
BISWAS S S . Potential use of ChatGPT in global warming. Annals of Biomedical Engineering, 2023, 51 (6): 1126- 1127.
doi: 10.1007/s10439-023-03171-8
|
2 |
PHUNG T, PǍDUREAN V A, CAMBRONERO J, et al. Generative AI for programming education: benchmarking ChatGPT, GPT-4, and human tutors[C]//Proceedings of the 2023 ACM Conference on International Computing Education Research. New York, USA: ACM Press, 2023: 41-42.
|
3 |
严昊, 刘禹良, 金连文, 等. 类ChatGPT大模型发展、应用和前景. 中国图象图形学报, 2023, 28 (9): 2749- 2762.
URL
|
|
YAN H , LIU Y L , JIN L W , et al. The development, application, and future of LLM similar to ChatGPT. Journal of Image and Graphics, 2023, 28 (9): 2749- 2762.
URL
|
4 |
吴砥, 李环, 陈旭. 人工智能通用大模型教育应用影响探析. 开放教育研究, 2023, 29 (2): 19-25, 45.
URL
|
|
WU D , LI H , CHEN X . Analysis on the influence of artificial intelligence generic large model on education application. Open Education Research, 2023, 29 (2): 19-25, 45.
URL
|
5 |
|
6 |
|
7 |
LIU P F , YUAN W Z , FU J L , et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 55 (9): 195.
|
8 |
DU Z X, QIAN Y J, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 320-335.
|
9 |
|
10 |
TIAN C W , ZHANG Y N , ZUO W M , et al. A heterogeneous group CNN for image super-resolution. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (5): 6507- 6519.
doi: 10.1109/TNNLS.2022.3210433
|
11 |
|
12 |
|
13 |
|
14 |
FRANTAR E, ASHKBOOS S, HOEFLER T, et al. GPTQ: accurate post-training quantization for generative pre-trained transformers[EB/OL]. [2023-10-18]. https://arxiv.org/abs/2210.17323.
|
15 |
TIAN C W , YUAN Y X , ZHANG S C , et al. Image super-resolution with an enhanced group convolutional neural network. Neural Networks, 2022, 153, 373- 385.
doi: 10.1016/j.neunet.2022.06.009
|
16 |
ZAFRIR O, BOUDOUKH G, IZSAK P, et al. Q8BERT: quantized 8 bit BERT[C]//Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing. Vancouver, Canada: [s. n. ], 2019: 36-39.
|
17 |
刘金硕, 刘宁. 面向招标文件的半结构化文本自动生成. 计算机工程, 2023, 49 (3): 67- 72.
URL
|
|
LIU J S , LIU N . Automatic generation of semi-structured texts for bidding documents. Computer Engineering, 2023, 49 (3): 67- 72.
URL
|
18 |
李健智, 王红玲, 王中卿. 基于场景与对话结构的摘要生成研究. 计算机工程, 2023, 49 (4): 303- 311.
URL
|
|
LI J Z , WANG H L , WANG Z Q . Research on summarization generation based on scene and dialogue structure. Computer Engineering, 2023, 49 (4): 303- 311.
URL
|
19 |
高玮军, 刘健, 毛文静. 基于T-HDGN模型的对话摘要生成方法. 计算机工程, 2023, 49 (10): 80- 88.
URL
|
|
GAO W J , LIU J , MAO W J . Dialogue summary generation method based on T-HDGN model. Computer Engineering, 2023, 49 (10): 80- 88.
URL
|
20 |
杨涛, 解庆, 刘永坚, 等. 主题感知的长文本自动摘要算法. 计算机工程与应用, 2022, 58 (20): 165- 173.
URL
|
|
YANG T , XIE Q , LIU Y J , et al. Research on topic-aware long text summarization algorithm. Computer Engineering and Applications, 2022, 58 (20): 165- 173.
URL
|
21 |
ZHAO Z W, WANG H F. MaskGEC: improving neural grammatical error correction via dynamic masking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 1226-1233.
|
22 |
WANG J D , LAN C L , LIU C , et al. Generalizing to unseen domains: a survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (8): 8052- 8072.
|
23 |
COLIN R , NOAM S , ADAM R , et al. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551.
|
24 |
|
25 |
|
26 |
HU B T, CHEN Q C, ZHU F Z. LCSTS: a large scale Chinese short text summarization dataset[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1967-1972.
|
27 |
HUA L F, WAN X J, LI L. Overview of the NLPCC 2017 shared task: single document summarization[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany: Springer, 2017: 942-947.
|
28 |
LIN C, LIU Y, AN S Y, et al. Unsupervised extractive summarization with heterogeneous graph embeddings for Chinese documents[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2023: 1-5.
|
29 |
LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]//Proceedings of the Workshop on Text Summarization Branches Out. Stroudsburg, USA: Association for Computational Linguistics, 2004: 74-81.
|
30 |
LIU X, JI K, FU Y, et al. P-Tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL]. [2023-10-18]. https://arxiv.org/abs/2110.07602.
|
31 |
|
32 |
张克君, 李伟男, 钱榕, 等. 基于深度学习的文本自动摘要方案. 计算机应用, 2019, 39 (2): 311- 315.
URL
|
|
ZHANG K J , LI W N , QIAN R , et al. Automatic text summarization scheme based on deep learning. Journal of Computer Applications, 2019, 39 (2): 311- 315.
URL
|
33 |
|
34 |
MA S, SUN X, XU J, et al. Improving semantic relevance for sequence-to-sequence learning of Chinese social media text summarization[EB/OL]. [2023-10-18]. https://arxiv.org/abs/1706.02459.
|
35 |
JI Z W , LEE N , FRIESKE R , et al. Survey of hallucination in natural language generation. ACM Computing Surveys, 55 (12): 248.
|
36 |
NARAYAN S, COHEN S B, LAPATA M. Don't give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization[EB/OL]. [2023-10-18]. https://arxiv.org/abs/1808.08745.
|
37 |
SUN G , WANG Z X , ZHAO J . Automatic text summarization using deep reinforcement learning and beyond. Information Technology and Control, 2021, 50 (3): 458- 469.
doi: 10.5755/j01.itc.50.3.28047
|
38 |
ZHENG H, LAPATA M. Sentence centrality revisited for unsupervised summarization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 6236-6247.
|
39 |
JIANG X P, HU P, HOU L W, et al. Improving pointer-generator network with keywords information for Chinese abstractive summarization[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany: Springer, 2018: 464-474.
|
40 |
ZHAO J, CHUNG T L, XU B, et al. Summary++: summarizing Chinese news articles with attention[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany: Springer, 2018: 27-37.
|
41 |
SHI Y S, MENG J, WANG J, et al. A normalized encoder-decoder model for abstractive summarization using focal loss[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. New York, USA: ACM Press, 2018: 383-392.
|