[1] WANG H,DING C,HUANG H.Multi-label linear discriminant analysis[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2010:126-139. [2] HUANG S M,YANG J F.Improved principal component regression for face recognition under illumination variations[J].IEEE Signal Processing Letters,2012,19(4):179-182. [3] PAPAGEORGIOU G,BOUBOULIS P,THEODORIDIS S.Robust linear regression analysis——a greedy approach[J].IEEE Transactions on Signal Processing,2015,63(15):3872-3887. [4] HUANG Pu,LAI Zhihui,GAO Guangwei,et al.Adaptive linear discriminant regression classification for face recognition[J].Digital Signal Processing,2016,55:78-84. [5] XIANG Shuo,ZHU Yunzhang,SHEN Xiaotong,et al.Optimal exact least squares rank minimization[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:480-488. [6] CAI X,DING C,NIE F,et al.On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2013:1124-1132. [7] HU Rongyao,LIU Xingyi,CHENG Debo,et al.Robust low-rank self-representation feature selection algorithm[J].Computer Engineering,2017,43(9):43-50.(in Chinese) 胡荣耀,刘星毅,程德波,等.鲁棒自表达的低秩属性选择算法[J].计算机工程,2017,43(9):43-50. [8] VIDAL R,YI M,SASTRY S S.Generalized principal component analysis[M].Berlin,Germany:Springer,2016. [9] LIU Guangcan,LIN Zhouchen,YAN Shuicheng,et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2013,35(1):171-184. [10] LIU Guangcan,LI Ping.Low-rank matrix completion in the presence of high coherence[J].IEEE Transactions on Signal Processing,2016,64(21):5623-5633. [11] YANG Fangfang,WU Xisheng,GU Biaozhun.A face recognition algorithm based on low-rank subspace projection and Gabor feature via sparse representation[J].Computer Engineering and Science,2017,39(1):131-137.(in Chinese)杨方方,吴锡生,顾标准.基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法[J].计算机工程与科学,2017,39(1):131-137. [12] XIE Hao.Research on subspace clustering algorithm based on low rank[D].Qingdao:Qingdao University,2018.(in Chinese)解昊.基于低秩性的子空间聚类算法研究[D].青岛:青岛大学,2018. [13] WANG Rong.Face representation and classification based on reconstructed representation[D].Yangzhou:Yangzhou University,2017.(in Chinese)王蓉.基于重构表示的人脸图像表示与分类[D].扬州:扬州大学,2017. [14] TAN Qunchao.Face recognition based on low rank matrix decomposition and sparde representation[J].Journal of Shandong University of Technology(Natural Science Edition),2017,31(4):36-40.(in Chinese)谭群超.基于低秩矩阵分解和稀疏表达的人脸识别方法[J].山东理工大学学报(自然科学版),2017,31(4):36-40. [15] ZHU Yani,ZHU Chaoyang,LI Xiaoxin.Improved principal component analysis and linear regression classification for face recognition[J].Signal Processing,2017,145:175-182. [16] YANG A Y,ZHOU Z,BALASUBRAMANIAN A G,et al.Fast L1-minimization algorithms for robust face recognition[J].IEEE Transactions on Image Processing,2013,22(8):3234-3246. [17] WANG Yu,YIN Wotao,ZENG Jinshan.Global convergence of ADMM in nonconvex nonsmooth optimization[J].Journal of Scientific Computing,2019,78(1):29-63. [18] CAI J F,CANDōS E J,SHEN Z.A singular value thresholding algorithm for matrix completion[J].SIAM Journal on optimization,2010,20(4):1956-1982. [19] LEE K C,HO J,KRIEGMAN D J.Acquiring linear subspaces for face recognition under variable lighting[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2005,27(5):684-698. [20] MARTÍNEZ A,BENAVENTE R.The AR face database[J].CVC Technical Report,1998,24:1-8. |