作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (1): 74-79,86. doi: 10.19678/j.issn.1000-3428.0053524

• 人工智能与模式识别 • 上一篇    下一篇

基于低秩表示的鲁棒回归模型

王丽娟a, 李可爱a, 郝志峰a, 蔡瑞初a, 尹明b   

  1. 广东工业大学 a. 计算机学院;b. 自动化学院, 广州 510006
  • 收稿日期:2018-12-28 修回日期:2019-01-31 出版日期:2020-01-15 发布日期:2019-02-01
  • 作者简介:王丽娟(1978-),女,副教授,主研方向为数据挖掘、机器学习;李可爱,硕士;郝志峰、蔡瑞初、尹明,教授。
  • 基金资助:
    国家自然科学基金(61502108,61876042,61876043,61502175,61773130);广东省自然科学基金(2014A030308008,2014A030306004);NSFC-广东联合基金(U1501254);广东省科技计划项目(2016B030306004,2017A010101024,2015B010131015);广东省教育厅科研项目(2017KTSCX059);广东省特支计划项目(2015TQ01X140)。

Robust Regression Model Based on Low Rank Representation

WANG Lijuana, LI Keaia, HAO Zhifenga, CAI Ruichua, YIN Mingb   

  1. a. School of Computer;b. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-12-28 Revised:2019-01-31 Online:2020-01-15 Published:2019-02-01

摘要: 现有的线性回归方法不能有效处理噪声和异常数据。针对这一问题,结合低秩表示和鲁棒回归方法构建模型LR-RRM。利用低秩表示方法以有监督的方式检测数据内的噪声和异常值,从原始数据的低维子空间中恢复数据干净部分,并将其应用于线性回归分类,从而提升回归性能。在Extend YaleB、AR、ORL和PIE人脸数据集上的实验结果表明,与标准线性回归、基于鲁棒主成分分析和低秩表示的线性回归模型相比,该模型在4种原始数据集以及添加随机噪声后的数据集上分类准确率和鲁棒性均较优。

关键词: 线性回归, 低秩表示, 噪声数据, 人脸识别, 高维数据

Abstract: The existing linear regression method cannot effectively deal with noise and outliers.To address the problem,this paper establishes the LR RRM model by combining Low Rank Representation(LRR) and robust regression methods.The LRR method is used to detect noise and outliers in the data in a supervised way.The clean part of data is recovered from the low dimensional subspace of the original data and is used for the classification of linear regression,so as to improve the regression performance.Experimental results on the Extend YaleB,AR,ORL and PIE face datasets show that compared with the standard linear regression model,the robust principal component analysis based linear regression model and the LRR linear regression model,the proposed model has better classification accuracy and robustness on the four original dataset and the dataset with random noise.

Key words: linear regression, Low Rank Representation(LRR), noisy data, face recognition, high dimensional data

中图分类号: