1 |
曹行健, 张志涛, 孙彦赞, 等. 面向智慧交通的图像处理与边缘计算. 中国图象图形学报, 2022, 27 (6): 1743- 1767.
URL
|
|
CAO X J, ZHANG Z T, SUN Y Z, et al. The review of image processing and edge computing for intelligent transportation system. Journal of Image and Graphics, 2022, 27 (6): 1743- 1767.
URL
|
2 |
HESAMIAN M H, JIA W J, HE X J, et al. Deep learning techniques for medical image segmentation: achievements and challenges. Journal of Digital Imaging, 2019, 32 (4): 582- 596.
doi: 10.1007/s10278-019-00227-x
|
3 |
宋菲菲, 隋栋, 周湘贞. 基于深度学习的智能学习资源推荐算法. 南京理工大学学报, 2022, 46 (2): 185- 191.
doi: 10.13196/j.cims.2019.10.006
|
|
SONG F F, SUI D, ZHOU X Z. Intelligence learning resource recommendation algorithm based on deep learning. Journal of Nanjing University of Science and Technology, 2022, 46 (2): 185- 191.
doi: 10.13196/j.cims.2019.10.006
|
4 |
REAL E, AGGARWAL A, HUANG Y, et al. Aging evolution for image classifier architecture search[C]//Proceedings of AAAI Conference on Artificial Intelligence. Hawaii, USA: AAAI Press, 2019: 2.
|
5 |
ZOPH B, LE Q V. Neural architecture search with reinforcement learning[C]//Proceedings of International Conference on Learning Representations. Toulon, France: OpenReview. net, 2017: 24-26.
|
6 |
PHAM H, GUAN M, ZOPH B, et al. Efficient neural architecture search via parameters sharing[C]//Proceedings of International Conference on Machine Learning. Stockholm, Sweden: OpenReview. net, 2018: 4095-4104.
|
7 |
YOU S, HUANG T, YANG M M, et al. GreedyNAS: towards fast One-shot NAS with greedy supernet[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1996-2005.
|
8 |
LIU H X, SIMONYAN K, YANG Y M. Differentiable architecture search[C]//Proceedings of International Conference on Learning Representations. New Orleans, USA: OpenReview. net, 2019: 1-10.
|
9 |
缪斯, 祝永新. 针对图像盲去模糊的可微分神经网络架构搜索方法. 计算机工程, 2021, 47 (9): 313- 320.
URL
|
|
MIAO S, ZHU Y X. Differentiable neural architecture search method for blind image deblurring. Computer Engineering, 2021, 47 (9): 313- 320.
URL
|
10 |
YANG Z H, WANG Y H, CHEN X H, et al. CARS: continuous evolution for efficient neural architecture search[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1826-1835.
|
11 |
DONG X Y, LIU L, MUSIAL K, et al. NATS-Bench: benchmarking NAS algorithms for architecture topology and size. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3634- 3646.
doi: 10.1109/TPAMI.2021.3054824
|
12 |
DONG X Y, YANG Y. Searching for a robust neural architecture in four GPU hours[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1761-1770.
|
13 |
DONG X Y, YANG Y. One-shot neural architecture search via self-evaluated template network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 3680-3689.
|
14 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
15 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2261-2269.
|
16 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8697-8710.
|
17 |
CHU X X, ZHOU T B, ZHANG B, et al. Fair DARTS: eliminating unfair advantages in differentiable architecture search[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 465-480.
|
18 |
CHEN X, XIE L X, WU J, et al. Progressive differentiable architecture search: bridging the depth gap between search and evaluation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1294-1303.
|
19 |
LU Z, WHALEN I, BODDETI V, et al. NSGA-Net: a multi-objective genetic algorithm for neural architecture search[C]//Proceedings of the Genetic and Evolutionary Computation Conference. Nusle, Czech Republic: Association for Computing Machinery, 2019: 419-427.
|
20 |
ZHANG H Y, JIN Y C, CHENG R, et al. Efficient evolutionary search of attention convolutional networks via sampled training and node inheritance. IEEE Transactions on Evolutionary Computation, 2021, 25 (2): 371- 385.
doi: 10.1109/TEVC.2020.3040272
|
21 |
ZHANG H Y, JIN Y C, HAO K R. Evolutionary search for complete neural network architectures with partial weight sharing. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1072- 1086.
doi: 10.1109/TEVC.2022.3140855
|
22 |
SINHA N, CHEN K W. Evolving neural architecture using one shot model[C]//Proceedings of the Genetic and Evolutionary Computation Conference. New York, USA: ACM Press, 2021: 910-918.
|