[1] WANG Jianzong,QU Xiaoyang.Dive into AutoML and AutoDL:building automated platforms for machine learning and deep learning[M].Beijing:China Machine Press,2019.(in Chinese)王健宗,瞿晓阳.深入理解AutoML和AutoDL:构建自动化机器学习与深度学习平台[M].北京:机械工业出版社,2019. [2] QUANMING Y,MENGSHUO W,HUGO J E,et al.Taking human out of learning applications:a survey on automated machine learning[EB/OL].[2020-01-15].https://arxiv.org/abs/1810.13306v1. [3] ZHOU Zhihua.Machine learning[M].Beijing:Tsinghua University Press,2016.(in Chinese)周志华.机器学习[M].北京:清华大学出版社,2016. [4] JENNINGS N R,WOOLDRIDGE M J.Foundations of machine learning[M].Cambridge,USA:MIT Press,2012. [5] ALPAYDIN E.Introduction to machine learning[M].Cambridge,USA:MIT Press,2004. [6] FORSYTH D A,PONCE J.Computer vision:a modern approach[M].[S.l.]:Prentice Hall Professional Technical Reference,2002. [7] GARCÍA S,LUENGO J,HERRERA F.Data reduction[M]//BENGIO Y,COURVILLE A.Intelligent systems reference library.Berlin,Germany:Springer,2014. [8] HE Jun,GE Hong,WANG Yufeng.Overview of image segmentation algorithms[J].Computer Engineering and Science,2009,31(12):58-61.(in Chinese)何俊,葛红,王玉峰.图像分割算法研究综述[J].计算机工程与科学,2009,31(12):58-61. [9] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research,2011,12:2493-2537. [10] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [11] GOODFELLOW I,BENGIO Y,COURVILLE A.Deep learning[M].Cambridge,USA:MIT press,2016. [12] SEIDE F,LI G,CHEN X,et al.Feature engineering in context-dependent deep neural networks for conver-sational speech transcription[C]//Proceedings of 2011 IEEE Workshop on Automatic Speech Recognition & Understanding.Washington D.C.,USA:IEEE Press,2011:24-29. [13] CLAESKENS G,HJORT N L.Model selection and model averaging[M].Cambridge,UK:Cambridge University Press,2001. [14] KHURANA U,NARGESIAN F,SAMULOWITZ H,et al.Automating feature engineering[J].Transformation,2016,18(10):1-10. [15] SHANG D Y,SUN H,ZENG Q L.A reinforcement-algorithm framework for automatic model selection[J].IOP Conference Series:Earth and Environmental Science,2020,440:022060. [16] OLSON R S,BARTLEY N,URBANOWICZ R J,et al.Evaluation of a tree-based pipeline optimization tool for automating data science[C]//Proceedings of 2016 Genetic and Evolutionary Computation Conference.New York,USA:ACM Press,2016:485-492. [17] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [18] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [19] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-01-25].https://arxiv.org/pdf/1409.1556.pdf. [20] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [21] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-ResNet and the impact of residual connections on learning[EB/OL].[2020-01-25].https://arxiv.org/abs/1602.07261. [22] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [23] ELSKEN T,METZEN J H,HUTTER F.Neural architecture search[EB/OL].[2020-01-25].https://arxiv.org/abs/1808.05377. [24] BAKER B,GUPTA O,NAIK N,et al.Designing neural network architectures using reinforcement learning[EB/OL].[2020-01-25].https://arxiv.org/abs/1611.02167. [25] ZOPH B,LE Q.Neural architecture search with reinforcement learning[EB/OL].[2020-01-25].https://arxiv.org/abs/1611.01578. [26] SHIN R,PACKER C,SONG D.Differentiable neural network architecture search[EB/OL].[2020-01-25].https://openreview.net/pdf?id=BJ-MRKkwG. [27] LIU H X,KAREN S,YIMING Y.Darts:differentiable architecture search[EB/OL].[2020-01-25].https://arxiv.org/abs/1806.09055. [28] HOLLAND J H.Genetic algorithms and adaptation[M].Berlin,Germany:Springer,1984. [29] BEYER H G,SCHWEFEL H.Evolution strategies-a comprehensive introduction[J].Natural Computing,2002,1(1):3-52. [30] FOGEL D B,FOGEL L J,ATMAR J W.Meta-evolutionary programming[EB/OL].[2020-01-25].https://ieeexplore.ieee.org/document/186507. [31] KOZA J R,POLI R.Genetic programming[M].Berlin,Germany:Springer,2005. [32] GOMEZ F J,MIIKKULAINEN R.Active guidance for a finless rocket using neuro evolution[M].Berlin,Germany:Springer,2003. [33] STANLEY K O,MIIKKULAINEN R.Evolving neural networks through augmenting topologies[J].Evolutionary Computation,2002,10(2):99-127. [34] MIIKKULAINEN R,LIANG J,MEYERSON E,et al.Evolving deep neural networks[M].[S.l.]:Elsevier,2019. [35] XIE L X,YUILLE A.Genetic CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:1379-1388. [36] MILLER J F,HARDING S L.Cartesian genetic programming[C]//Proceedings of GECCO'09.New York,USA:ACM Press,2009:15-26. [37] SUGANUMA M,SHIRAKAWA S,NAGAO T.A genetic programming approach to designing convolutional neural network architectures[C]//Proceedings of Genetic and Evolutionary Computation Conference.Berlin,Germany:Springer,2017:497-504. [38] REAL E,MOORE S,SELLE A,et al.Large-scale evolution of image classifiers[C]//Proceedings of the 34th International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2017:56-89. [39] ZHANG H L,KIRANYAZ S,GABBOUJ M.Finding better topologies for deep convolutional neural networks by evolution[EB/OL].[2020-01-25].https://arxiv.org/abs/1809.03242. [40] LIU H X,SIMONYAN K,VINYALS O,et al.Hierarchical representations for efficient architecture search[EB/OL].[2020-01-25].https://arxiv.org/abs/1711.00436. |