1 |
齐金山, 梁循, 李志宇, 等. 大规模复杂信息网络表示学习: 概念、方法与挑战. 计算机学报, 2018, 41 (10): 2394- 2420.
doi: 10.11897/SP.J.1016.2018.02394
|
|
QI J S , LIANG X , LI Z Y , et al. Representation learning of large-scale complex information network: concepts, methods and challenges. Chinese Journal of Computers, 2018, 41 (10): 2394- 2420.
doi: 10.11897/SP.J.1016.2018.02394
|
2 |
BHAGAT S , CORMODE G , MUTHUKRISHNAN S . Node classification in social networks. Berlin, Germany: Springer, 2011: 115- 148.
|
3 |
ZHAO T X, ZHANG X, WANG S H. GraphSMOTE: imbalanced node classification on graphs with graph neural networks[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2021: 833-841.
|
4 |
|
5 |
LÜ L Y , ZHOU T . Link prediction in complex networks: a survey. Statistical Mechanics and Its Applications, 2011, 390 (6): 1150- 1170.
doi: 10.1016/j.physa.2010.11.027
|
6 |
ZHU Z C, ZHANG Z B, XHONNEUX L P, et al. Neural bellman-ford networks: a general graph neural network framework for link prediction[EB/OL]. [2022-08-10]. https://arxiv.org/abs/2106.06935.
|
7 |
WANG M H , QIU L L , WANG X L . A survey on knowledge graph embeddings for link prediction. Symmetry, 2021, 13 (3): 485.
doi: 10.3390/sym13030485
|
8 |
王思檬, 曹佳. 边异质网络中的社区结构发现算法. 计算机工程, 2019, 45 (6): 140- 145.
URL
|
|
WANG S M , CAO J . Community structure detection algorithm for heterogeneous edge network. Computer Engineering, 2019, 45 (6): 140- 145.
URL
|
9 |
李有红, 王学军, 谌裕勇, 等. 一种融合邻边属性的个人社交网络社区发现算法. 计算机工程, 2021, 47 (7): 81- 87.
URL
|
|
LI Y H , WANG X J , CHEN Y Y , et al. A community discovery algorithm fused with adjacent edge attribute for personal social network. Computer Engineering, 2021, 47 (7): 81- 87.
URL
|
10 |
AGARWAL S, BRANSON K, BELONGIE S. Higher order learning with graphs[C]//Proceedings of the 23rd International Conference on Machine Learning. New York, USA: ACM Press, 2006: 17-24.
|
11 |
LOUIS A. Hypergraph Markov operators, eigenvalues and approximation algorithms[C]//Proceedings of the 47th Annual ACM Symposium on Theory of Computing. New York, USA: ACM Press, 2015: 713-722.
|
12 |
HUANG J E , CHEN C A , YE F H , et al. Hyper2vec: biased random walk for hyper-network embedding. Berlin, Germany: Springer, 2019: 273- 277.
|
13 |
HUANG J, LIU X, SONG Y Q. Hyper-path-based representation learning for hyper-networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 449-458.
|
14 |
TU K , CUI P , WANG X A , et al. Structural deep embedding for hyper-networks. Artificial Intelligence, 2018, 32 (1): 426- 433.
|
15 |
|
16 |
石川, 王睿嘉, 王啸. 异质信息网络分析与应用综述. 软件学报, 2022, 33 (2): 598- 621.
URL
|
|
SHI C , WANG R J , WANG X . Survey on heterogeneous information networks analysis and applications. Journal of Software, 2022, 33 (2): 598- 621.
URL
|
17 |
FU G J , YUAN B , DUAN Q Q , et al. Representation learning for heterogeneous information networks via embedding events. Berlin, Germany: Springer, 2019.
|
18 |
BRETTO A . Hypergraph theory: an introduction. Berlin, Germany: Springer, 2013.
|
19 |
刘贞国, 朱宇, 刘连照, 等. 基于转化策略的异质超网络表示学习. 计算机应用研究, 2022, 39 (11): 3333- 3339.
URL
|
|
LIU Z G , ZHU Y , LIU L Z , et al. Heterogeneous hypernetwork representation learning based on transformation strategy. Application Research of Computers, 2022, 39 (11): 3333- 3339.
URL
|
20 |
ZHENG V , CAO B , ZHENG Y , et al. Collaborative filtering meets mobile recommendation: a user-centered approach. Artificial Intelligence, 2010, 24 (1): 236- 241.
|
21 |
HARPER F M , JOSEPH A K . The MovieLens datasets: history and context. ACM Transactions on Interactive Intelligent Systems, 2016, 5 (4): 1- 19.
|
22 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
23 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings International Conference on Knowledge Discovery and Data Mining. Washington D.C., USA: IEEE Press, 2016: 855-864.
|
24 |
DONG Y X, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 135-144.
|
25 |
ZHAN L , JIA T . CoarSAS2hvec: heterogeneous information network embedding with balanced network sampling. Entropy, 2022, 24 (2): 276.
|
26 |
姜正申, 刘宏志, 付彬, 等. 集成学习的泛化误差和AUC分解理论及其在权重优化中的应用. 计算机学报, 2019, 42 (1): 1- 15.
URL
|
|
JIANG Z S , LIU H Z , FU B , et al. Decomposition theories of generalization error and AUC in ensemble learning with application in weight optimization. Chinese Journal of Computers, 2019, 42 (1): 1- 15.
URL
|