| 1 | 
																						 
											   BISWAS S S .  Potential use of ChatGPT in global warming. Annals of Biomedical Engineering, 2023, 51 (6): 1126- 1127.  
											 												 
																									doi: 10.1007/s10439-023-03171-8    
																																															 											 | 
										
																													
																						| 2 | 
																						 
											  PHUNG T, PǍDUREAN V A, CAMBRONERO J, et al. Generative AI for programming education: benchmarking ChatGPT, GPT-4, and human tutors[C]//Proceedings of the 2023 ACM Conference on International Computing Education Research. New York, USA: ACM Press, 2023: 41-42. 
											 											 | 
										
																													
																						| 3 | 
																						 
											  严昊, 刘禹良, 金连文, 等.  类ChatGPT大模型发展、应用和前景. 中国图象图形学报, 2023, 28 (9): 2749- 2762.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   YAN H ,  LIU Y L ,  JIN L W , et al.  The development, application, and future of LLM similar to ChatGPT. Journal of Image and Graphics, 2023, 28 (9): 2749- 2762.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 4 | 
																						 
											  吴砥, 李环, 陈旭.  人工智能通用大模型教育应用影响探析. 开放教育研究, 2023, 29 (2): 19-25, 45.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   WU D ,  LI H ,  CHEN X .  Analysis on the influence of artificial intelligence generic large model on education application. Open Education Research, 2023, 29 (2): 19-25, 45.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 5 | 
																						 
											 
											 											 | 
										
																													
																						| 6 | 
																						 
											 
											 											 | 
										
																													
																						| 7 | 
																						 
											   LIU P F ,  YUAN W Z ,  FU J L , et al.  Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 55 (9): 195. 
											 											 | 
										
																													
																						| 8 | 
																						 
											  DU Z X, QIAN Y J, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 320-335. 
											 											 | 
										
																													
																						| 9 | 
																						 
											 
											 											 | 
										
																													
																						| 10 | 
																						 
											   TIAN C W ,  ZHANG Y N ,  ZUO W M , et al.  A heterogeneous group CNN for image super-resolution. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (5): 6507- 6519.  
											 												 
																									doi: 10.1109/TNNLS.2022.3210433    
																																															 											 | 
										
																													
																						| 11 | 
																						 
											 
											 											 | 
										
																													
																						| 12 | 
																						 
											 
											 											 | 
										
																													
																						| 13 | 
																						 
											 
											 											 | 
										
																													
																						| 14 | 
																						 
											 FRANTAR E, ASHKBOOS S, HOEFLER T, et al. GPTQ: accurate post-training quantization for generative pre-trained transformers[EB/OL]. [2023-10-18].  https://arxiv.org/abs/2210.17323.  
											 											 | 
										
																													
																						| 15 | 
																						 
											   TIAN C W ,  YUAN Y X ,  ZHANG S C , et al.  Image super-resolution with an enhanced group convolutional neural network. Neural Networks, 2022, 153, 373- 385.  
											 												 
																									doi: 10.1016/j.neunet.2022.06.009    
																																															 											 | 
										
																													
																						| 16 | 
																						 
											  ZAFRIR O, BOUDOUKH G, IZSAK P, et al. Q8BERT: quantized 8 bit BERT[C]//Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing. Vancouver, Canada: [s. n. ], 2019: 36-39. 
											 											 | 
										
																													
																						| 17 | 
																						 
											  刘金硕, 刘宁.  面向招标文件的半结构化文本自动生成. 计算机工程, 2023, 49 (3): 67- 72.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   LIU J S ,  LIU N .  Automatic generation of semi-structured texts for bidding documents. Computer Engineering, 2023, 49 (3): 67- 72.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 18 | 
																						 
											  李健智, 王红玲, 王中卿.  基于场景与对话结构的摘要生成研究. 计算机工程, 2023, 49 (4): 303- 311.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   LI J Z ,  WANG H L ,  WANG Z Q .  Research on summarization generation based on scene and dialogue structure. Computer Engineering, 2023, 49 (4): 303- 311.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 19 | 
																						 
											  高玮军, 刘健, 毛文静.  基于T-HDGN模型的对话摘要生成方法. 计算机工程, 2023, 49 (10): 80- 88.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   GAO W J ,  LIU J ,  MAO W J .  Dialogue summary generation method based on T-HDGN model. Computer Engineering, 2023, 49 (10): 80- 88.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 20 | 
																						 
											  杨涛, 解庆, 刘永坚, 等.  主题感知的长文本自动摘要算法. 计算机工程与应用, 2022, 58 (20): 165- 173.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   YANG T ,  XIE Q ,  LIU Y J , et al.  Research on topic-aware long text summarization algorithm. Computer Engineering and Applications, 2022, 58 (20): 165- 173.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 21 | 
																						 
											  ZHAO Z W, WANG H F. MaskGEC: improving neural grammatical error correction via dynamic masking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 1226-1233. 
											 											 | 
										
																													
																						| 22 | 
																						 
											   WANG J D ,  LAN C L ,  LIU C , et al.  Generalizing to unseen domains: a survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (8): 8052- 8072. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   COLIN R ,  NOAM S ,  ADAM R , et al.  Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551. 
											 											 | 
										
																													
																						| 24 | 
																						 
											 
											 											 | 
										
																													
																						| 25 | 
																						 
											 
											 											 | 
										
																													
																						| 26 | 
																						 
											  HU B T, CHEN Q C, ZHU F Z. LCSTS: a large scale Chinese short text summarization dataset[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1967-1972. 
											 											 | 
										
																													
																						| 27 | 
																						 
											  HUA L F, WAN X J, LI L. Overview of the NLPCC 2017 shared task: single document summarization[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany: Springer, 2017: 942-947. 
											 											 | 
										
																													
																						| 28 | 
																						 
											  LIN C, LIU Y, AN S Y, et al. Unsupervised extractive summarization with heterogeneous graph embeddings for Chinese documents[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2023: 1-5. 
											 											 | 
										
																													
																						| 29 | 
																						 
											  LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]//Proceedings of the Workshop on Text Summarization Branches Out. Stroudsburg, USA: Association for Computational Linguistics, 2004: 74-81. 
											 											 | 
										
																													
																						| 30 | 
																						 
											 LIU X, JI K, FU Y, et al. P-Tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL]. [2023-10-18].  https://arxiv.org/abs/2110.07602.  
											 											 | 
										
																													
																						| 31 | 
																						 
											 
											 											 | 
										
																													
																						| 32 | 
																						 
											  张克君, 李伟男, 钱榕, 等.  基于深度学习的文本自动摘要方案. 计算机应用, 2019, 39 (2): 311- 315.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   ZHANG K J ,  LI W N ,  QIAN R , et al.  Automatic text summarization scheme based on deep learning. Journal of Computer Applications, 2019, 39 (2): 311- 315.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 33 | 
																						 
											 
											 											 | 
										
																													
																						| 34 | 
																						 
											 MA S, SUN X, XU J, et al. Improving semantic relevance for sequence-to-sequence learning of Chinese social media text summarization[EB/OL]. [2023-10-18].  https://arxiv.org/abs/1706.02459.  
											 											 | 
										
																													
																						| 35 | 
																						 
											   JI Z W ,  LEE N ,  FRIESKE R , et al.  Survey of hallucination in natural language generation. ACM Computing Surveys, 55 (12): 248. 
											 											 | 
										
																													
																						| 36 | 
																						 
											 NARAYAN S, COHEN S B, LAPATA M. Don't give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization[EB/OL]. [2023-10-18].  https://arxiv.org/abs/1808.08745.  
											 											 | 
										
																													
																						| 37 | 
																						 
											   SUN G ,  WANG Z X ,  ZHAO J .  Automatic text summarization using deep reinforcement learning and beyond. Information Technology and Control, 2021, 50 (3): 458- 469.  
											 												 
																									doi: 10.5755/j01.itc.50.3.28047    
																																															 											 | 
										
																													
																						| 38 | 
																						 
											  ZHENG H, LAPATA M. Sentence centrality revisited for unsupervised summarization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 6236-6247. 
											 											 | 
										
																													
																						| 39 | 
																						 
											  JIANG X P, HU P, HOU L W, et al. Improving pointer-generator network with keywords information for Chinese abstractive summarization[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany: Springer, 2018: 464-474. 
											 											 | 
										
																													
																						| 40 | 
																						 
											  ZHAO J, CHUNG T L, XU B, et al. Summary++: summarizing Chinese news articles with attention[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany: Springer, 2018: 27-37. 
											 											 | 
										
																													
																						| 41 | 
																						 
											  SHI Y S, MENG J, WANG J, et al. A normalized encoder-decoder model for abstractive summarization using focal loss[C]//Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. New York, USA: ACM Press, 2018: 383-392. 
											 											 |