1 |
周园春, 王卫军, 乔子越, 等. 科技大数据知识图谱构建方法及应用研究综述. 中国科学: 信息科学, 2020, 50(7): 957- 987.
URL
|
|
ZHOU Y C, WANG W J, QIAO Z Y, et al. A survey on the construction methods and applications of sci-tech big data knowledge graph. Scientia Sinica(Informationis), 2020, 50(7): 957- 987.
URL
|
2 |
HU K, LUO Q, QI K L, et al. Understanding the topic evolution of scientific literatures like an evolving city: using Google Word2Vec model and spatial autocorrelation analysis. Information Processing & Management, 2019, 56(4): 1185- 1203.
|
3 |
|
4 |
BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners. Advances in Neural Information Processing Systems, 2020, 33, 1877- 1901.
|
5 |
WU T Y, HE S Z, LIU J P, et al. A brief overview of ChatGPT: the history, status quo and potential future development. CAA Journal of Automatica Sinica, 2023, 10(5): 1122- 1136.
|
6 |
|
7 |
DU Z X, QIAN Y J, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2022: 320-335.
|
8 |
|
9 |
|
10 |
SUN Y, WANG S H, FENG S K, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2023-01-08]. https://arxiv.org/pdf/2107.02137.
|
11 |
AUGENSTEIN I, DAS M, RIEDEL S, et al. SemEval 2017 task 10: ScienceIE-extracting keyphrases and relations from scientific publications[C]//Proceedings of International Workshop on Semantic Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2017: 546-555.
|
12 |
BUSCALDI D, SCHUMANN A K, QASEMIZADEH B, et al. SemEval-2018 task 7: semantic relation extraction and classification in scientific papers[C]//Proceedings of International Workshop on Semantic Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2018: 679-688.
|
13 |
LUAN Y, HE L H, OSTENDORF M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 3219-3232.
|
14 |
SAIER T, FÄRBER M. unarXive: a large scholarly data set with publications' full-text, annotated in-text citations, and links to metadata. Scientometrics, 2020, 125(3): 3085- 3108.
doi: 10.1007/s11192-020-03382-z
|
15 |
LO K, WANG L L, NEUMANN M, et al. S2ORC: the semantic scholar open research corpus[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 4969-4983.
|
16 |
LI Y, ZHANG Y, ZHAO Z, et al. CSL: a large-scale Chinese scientific literature dataset[C]//Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 3917-3923.
|
17 |
QASEMIZADEH B, SCHUMANN A K. The ACL RD-TEC 2.0: a language resource for evaluating term extraction and entity recognition methods[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation. Washington D. C., USA: IEEE Press, 2016: 1862-1868.
|
18 |
SONG B S, LI F, LIU Y S, et al. Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison. Briefings in Bioinformatics, 2021, 22(6): bbab282.
|
19 |
蒋婷. 学科领域本体学习及学术资源语义标注研究[D]. 南京: 南京大学, 2017.
|
|
JIANG T. Discipline ontology learning and semantic annotation for scientific resources[D]. Nanjing: Nanjing University, 2017. (in Chinese)
|
20 |
AGRAWAL M, HEGSELMANN S, LANG H, et al. Large language models are few-shot clinical information extractors[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 1998-2022.
|
21 |
|
22 |
|
23 |
|
24 |
CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT. ACM Transactions on Audio, Speech, and Language Processing, 2021, 29, 3504- 3514.
|
25 |
王颖洁, 张程烨, 白凤波, 等. 中文命名实体识别研究综述. 计算机科学与探索, 2023, 17(2): 324- 341.
URL
|
|
WANG Y J, ZHANG C Y, BAI F B, et al. Review of Chinese named entity recognition research. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324- 341.
URL
|
26 |
张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述. 计算机工程, 2022, 48(3): 23- 37.
URL
|
|
ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques. Computer Engineering, 2022, 48(3): 23- 37.
URL
|