[1] XU L, ZHENG S, JIA J.Unnatural l0 sparse representation for natural image deblurring[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:1107-1114. [2] PAN J, SU Z.Fast l0-regularized kernel estimation for robust motion deblurring[J].IEEE Signal Processing Letters, 2013, 20(9):841-844. [3] HE K, SUN J, TANG X.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12):2341-2353. [4] PAN J, SUN D, PFISTER H, et al.Deblurring images via dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(10):2315-2328. [5] 王俊芝, 玉振明.基于LMS自适应算法的图像去模糊研究[J].计算机工程, 2012, 38(17):226-231. WANG J Z, YU Z M.Research on image debluring based on adaptive least mean square algorithm[J].Computer Engineering, 2012, 38(17):226-231.(in Chinese) [6] SCHULER C J, HIRSCH M, HARMELING S, et al.Learning to deblur[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(7):1439-1451. [7] HRADIŠ M, KOTERA J, ZEMCIK P, et al.Convolutional neural networks for direct text deblurring[EB/OL].[2020-05-11].http://www.bmva.org/bmvc/2015/papers/paper006/paper006.pdf. [8] NAH S, HYUN K T, MU L K.Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3883-3891. [9] TAO X, GAO H, SHEN X, et al.Scale-recurrent network for deep image deblurring[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8174-8182. [10] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [11] KUPYN O, BUDZAN V, MYKHAILYCH M, et al.Deblurgan:blind motion deblurring using conditional adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8183-8192. [12] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of Advances in Neural Information Processing Systems.Montreal, Canada:MIT Press, 2014:2672-2680. [13] ZOPH B, LE Q V.Neural architecture search with reinforcement learning[EB/OL].[2020-05-10].https://arxiv.org/pdf/1611.01578.pdf. [14] LIU H, SIMONYAN K, YANG Y.Darts:differentiable architecture search[EB/OL].[2020-05-11].https://arxiv.org/pdf/1806.09055.pdf. [15] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Cconference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [16] PENG W, HONG X, ZHAO G.Video action recognition via neural architecture searching[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2019:11-15. [17] WENG Y, ZHOU T, LIU L, et al.Automatic convolutional neural architecture search for image classification under different scenes[J].IEEE Access, 2019, 7:38495-38506. [18] HUNDT A, JAIN V, HAGER G D.sharpDARTS:faster and more accurate differentiable architecture search[EB/OL].[2020-05-15].https://arxiv.org/pdf/1903.09900.pdf. [19] WU B, DAI X, ZHANG P, et al.Fbnet:hardware-aware efficient convnet design via differentiable neural architecture search[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10734-10742. [20] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-05-16].https://arxiv.org/pdf/1409.1556.pdf. [21] RONNEBERGER O, FISCHER P, BROX T.U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Munich, Germany:Springer, 2015:234-241. [22] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2020-05-16].https://arxiv.org/pdf/1412.6980.pdf. [23] CHEN X, FANG H, LIN T Y, et al.Microsoft coco captions:data collection and evaluation server[EB/OL].[2020-05-17].https://arxiv.org/pdf/1504.00325.pdf. [24] KÖHLER R, HIRSCH M, MOHLER B, et al.Recording and playback of camera shake:benchmarking blind deconvolution with a real-world database[C]//Proceedings of European Conference on Computer Vision.Florence, Italy:Springer, 2012:27-40. [25] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. [26] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision And Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4681-4690. [27] SUN J, CAO W, XU Z, et al.Learning a convolutional neural network for non-uniform motion blur removal[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:769-777. [28] ZHANG H, DAI Y, LI H, et al.Deep stacked hierarchical multi-patch network for image deblurring[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5978-5986. [29] LIU S, PAN J, YANG M H.Learning recursive filters for low-level vision via a hybrid neural network[C]//European Conference on Computer Vision.Amsterdam, Netherlands:Springer, 2016:560-576. |