1 |
冯宗宪, 王安静. 中国区域碳峰值测度的思考和研究——基于全国和陕西省数据的分析. 西安交通大学学报(社会科学版), 2016, 36 (4): 96- 104.
doi: 10.15896/j.xjtuskxb.201604014
|
|
FENG Z X , WANG A J . Comparative study of China regional carbon peak-based on national data and Shaanxi province. Journal of Xi'an Jiaotong University (Social Sciences), 2016, 36 (4): 96- 104.
doi: 10.15896/j.xjtuskxb.201604014
|
2 |
Intergovernmental Panel on Climate Change . Climate change 2013: the physical science basis. New York, USA: Cambridge University Press, 2013.
|
3 |
姜克隽, 贺晨旻, 庄幸, 等. 我国能源活动CO2排放在2020—2022年之间达到峰值情景和可行性研究. 气候变化研究进展, 2016, 12 (3): 167- 171.
doi: 10.12006/j.issn.1673-1719.2015.200
|
|
JIANG K J , HE C M , ZHUANG X , et al. Scenario and feasibility study for peaking CO2 emission from energy activities in China. Climate Change Research, 2016, 12 (3): 167- 171.
doi: 10.12006/j.issn.1673-1719.2015.200
|
4 |
SAIDUR R . Energy consumption, energy savings, and emission analysis in Malaysian office buildings. Energy Policy, 2009, 37 (10): 4104- 4113.
doi: 10.1016/j.enpol.2009.04.052
|
5 |
KHAN N , YAQOOB I , HASHEM I A T , et al. Big data: survey, technologies, opportunities, and challenges. The Scientific World Journal, 2014, 7, 712826.
doi: 10.1155/2014/712826
|
6 |
LI T , SAHU A K , TALWALKAR A , et al. Federated learning: challenges, methods, and future directions. IEEE Signal Processing Magazine, 2020, 37 (3): 50- 60.
doi: 10.1109/MSP.2020.2975749
|
7 |
郑美光, 杨泳. 基于互信息软聚类的个性化联邦学习算法. 计算机工程, 2023, 49 (8): 20- 28.
|
|
ZHENG M G , YANG Y . Personalized federated learning algorithm based on mutual information and soft clustering. Computer Engineering, 2023, 49 (8): 20- 28.
|
8 |
杨文琦, 章阳, 聂江天, 等. 基于联邦学习的无线网络节点能量与信息管理策略. 计算机工程, 2022, 48 (1): 188-196, 203.
doi: 10.19678/j.issn.1000-3428.0060825
|
|
YANG W Q , ZHANG Y , NIE J T , et al. Energy and information management strategy based on federated learning for wireless network nodes. Computer Engineering, 2022, 48 (1): 188-196, 203.
doi: 10.19678/j.issn.1000-3428.0060825
|
9 |
JORDAN M I , MITCHELL T M . Machine learning: trends, perspectives, and prospects. Science, 2015, 349 (6245): 255- 260.
doi: 10.1126/science.aaa8415
|
10 |
JANIESCH C , ZSCHECH P , HEINRICH K . Machine learning and deep learning. Electronic Markets, 2021, 31 (3): 685- 695.
doi: 10.1007/s12525-021-00475-2
|
11 |
LU L L , ZHOU L , ZHANG H Y , et al. The effects of industrial energy consumption on energy-related carbon emissions at national and provincial levels in China. Energy Science[WT《Times New Roman》]& Engineering, 2018, 6 (5): 371- 384.
|
12 |
WANG P , ZHONG Y Y , YAO Z N . Modeling and estimation of CO2 emissions in China based on artificial intelligence. Computational Intelligence and Neuroscience, 2022, 32, 6822467.
|
13 |
POUYANFAR S , SADIQ S , YAN Y L , et al. A survey on deep learning: algorithms, techniques, and applications. ACM Computing Surveys, 2019, 51 (5): 1- 36.
URL
|
14 |
QIAO Y C , LAN Q J , ZHOU Z D , et al. Privacy-preserving credit evaluation system based on blockchain. Expert Systems with Applications, 2022, 188, 115989.
doi: 10.1016/j.eswa.2021.115989
|
15 |
VAN DIJK M, GENTRY C, HALEVI S, et al. Fully homomorphic encryption over the integers[C]//Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Germany: Springer, 2010: 24-43.
|
16 |
CHAI D , WANG L Y , CHEN K , et al. Secure federated matrix factorization. IEEE Intelligent Systems, 2021, 36 (5): 11- 20.
doi: 10.1109/MIS.2020.3014880
|
17 |
HUANG W , LI T R , WANG D X , et al. Fairness and accuracy in horizontal federated learning. Information Sciences, 2022, 589, 170- 185.
doi: 10.1016/j.ins.2021.12.102
|
18 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-08-18]. https://arxiv.org/pdf/1602.05629.
|
19 |
MUHAMMAD K, WANG Q Q, O'REILLY-MORGAN D, et al. FedFast: going beyond average for faster training of federated recommender systems[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery[WT《Times New Roman》]& Data Mining. New York, USA: ACM Press, 2020: 1234-1242.
|
20 |
LI S, LI W Q, COOK C, et al. Independently recurrent neural network (IndRNN): building a longer and deeper RNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 5457-5466.
|
21 |
CORTES P , RODRIGUEZ J , SILVA C , et al. Delaycompensation in model predictive current control of a three-phase inverter. IEEE Transactions on Industrial Electronics, 2012, 59 (2): 1323- 1325.
|
22 |
ACAR A , AKSU H , ULUAGAC A S , et al. A survey on homomorphic encryption schemes. ACM Computing Surveys, 2019, 51 (4): 1- 35.
|
23 |
|
24 |
|
25 |
CHENG H T, KOC L, HARMSEN J, et al. Wide[WT《Times New Roman》]& deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York, USA: ACM Press, 2016: 7-10.
|