作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (1): 164-173. doi: 10.19678/j.issn.1000-3428.0068452

• 网络空间安全 • 上一篇    下一篇

基于纵向联邦学习的能源排放跨界智能分析

王圆圆1,*(), 王世谦1, 王涵1, 郭正宾2, 胡显承3   

  1. 1. 国网河南省电力公司经济技术研究院, 河南 郑州 450000
    2. 河南九域腾龙信息工程有限公司, 河南 郑州 450000
    3. 西安交通大学计算机科学与技术学院, 陕西 西安 710049
  • 收稿日期:2023-09-25 出版日期:2025-01-15 发布日期:2024-04-26
  • 通讯作者: 王圆圆
  • 基金资助:
    国家电网公司总部科技项目(1400-202324345A-1-1-ZH)

Cross-Border Intelligent Analysis of Energy Emission Based on Vertical Federated Learning

WANG Yuanyuan1,*(), WANG Shiqian1, WANG Han1, GUO Zhengbin2, HU Xiancheng3   

  1. 1. Research Institute of Economics and Technology, State Grid Henan Electric Power Company, Zhengzhou 450000, Henan, China
    2. Henan Jiuyu Tenglong Information Engineering Co., Ltd., Zhengzhou 450000, Henan, China
    3. School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
  • Received:2023-09-25 Online:2025-01-15 Published:2024-04-26
  • Contact: WANG Yuanyuan

摘要:

在企业生产过程中的能源排放预测一直是企业管理和政府监督重点关注的问题, 随着信息采集能力增强, 在能源排放预测过程中会涉及越来越多的跨界数据, 使得预测模型面临着数据量庞大和数据关联性较低的挑战, 从而增大模型的训练难度, 降低预测的准确性。为此, 提出基于纵向联邦学习的能源排放智能预测模型。针对跨领域联合建模过程中数据源分散、信息密度小的问题, 设计基于纵向联邦学习的异步网络更新方法, 保证本地数据的安全和多方建模的质量。异步网络更新方法还能降低多方建模的时间和空间开销。针对模型间通信数据的安全高效传递问题, 设计基于同态加密的数据跨平台通信算法, 利用数据加密在保障通信网络安全的同时使用数据压缩技术减小加密数据的体积, 进一步提高模型间的通信效率。实验结果表明, 该模型具有良好的性能, 相比于基准模型, 所提的能源排放预测模型的R2值最多提升了16%, 能够降低约40%的联合建模时间, 充分证明能源排放跨界智能分析模型解决了跨界数据难以共享共用的问题, 并且提高了跨界联合建模的速度和准确率。

关键词: 能源排放预测, 跨界融合, 纵向联邦学习, 多方建模, 数据安全

Abstract:

Energy emission prediction in enterprise production processes has long been a focal point for enterprise management and government supervision. However, with the increasing use of cross-border data in the prediction process due to enhanced information collection capabilities, prediction models face challenges such as large data volumes and low data relevance, leading to difficulties in training and reduced prediction accuracy. To address these issues, this study proposes an intelligent prediction model for energy emissions based on Vertical Federated Learning (VFL). To handle scattered data sources and low information density during cross-domain joint modeling, an asynchronous network update method based on VFL is introduced, ensuring the safety of local data and the quality of multi-party modeling. Asynchronous network update method can also reduce the time and space overhead of multi-party modeling Additionally, a data cross-platform communication algorithm based on Homomorphic Encryption (HE) is proposed to achieve secure and efficient communication between models. This algorithm employs data encryption for secure communication and data compression techniques to enhance communication efficiency. Experimental results demonstrate that the proposed model outperforms traditional methods, achieving up to a 16% R2 improvement and approximately 40% reduction in joint modeling time. This cross-border intelligent analysis model effectively addresses the sharing and utilization issues of cross-border data, enhancing the speed and accuracy of cross-border joint modeling.

Key words: energy emission prediction, cross-border fusion, Vertical Federated Learning(VFL), multi-party modeling, data security