作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (1): 321-331. doi: 10.19678/j.issn.1000-3428.0068838

• 开发研究与工程应用 • 上一篇    下一篇

基于人在回路策略的在线置信规则库疾病诊断方法

韩文策1, 康潇2, 李红宇1,*(), 贺维1, 周国辉1, 卜祥峰1   

  1. 1. 哈尔滨师范大学计算机科学与信息工程学院, 黑龙江 哈尔滨 150000
    2. 中国铁塔股份有限公司山东省德州市分公司, 山东 德州 253000
  • 收稿日期:2023-11-14 出版日期:2025-01-15 发布日期:2024-04-09
  • 通讯作者: 李红宇
  • 基金资助:
    博士后科学基金项目(2020M683736); 黑龙江省高等学校教学改革项目(SJGY20210456); 黑龙江省高等学校教学改革项目(SJGY20210457); 黑龙江省自然科学基金(LH2021F038); 哈尔滨师范大学计算机科学与信息工程学院自然科学基金项目

Online Belief Rule Base Disease Diagnosis Method Based on Human-in-the-Loop Strategy

HAN Wence1, KANG Xiao2, LI Hongyu1,*(), HE Wei1, ZHOU Guohui1, BO Xiangfeng1   

  1. 1. School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150000, Heilongjiang, China
    2. Shandong Dezhou Branch, China Tower Co., Ltd., Dezhou 253000, Shandong, China
  • Received:2023-11-14 Online:2025-01-15 Published:2024-04-09
  • Contact: LI Hongyu

摘要:

在医疗实践中, 收集病人的生理指标往往是诊断疾病的关键。然而, 现实中病人的生理数据往往是不确定和模糊的。置信规则库(BRB)是一种专家系统方法, 它通过结合专家知识将数据转化为置信分布, 从而有效地处理各种不确定性和模糊性信息。然而, 目前基于BRB的疾病诊断模型仍依赖于离线训练方法, 这不足以满足疾病诊断环境中的动态实时要求。此外, 其他领域现有的在线模型也存在训练数据样本数量爆炸式增长和样本不平衡的问题。因此, 提出一种基于人在回路策略的在线置信规则库疾病诊断方法。首先, 将传统的离线训练BRB疾病诊断模型改进为在线训练模型, 使模型能够根据不同患者的生理指标实现动态增长。其次, 在在线学习的BRB模型中, 提出了一种人在回路算法, 以增强专家的决策能力, 有效解决传统在线模型中训练样本爆炸式增长、模型输出过拟合和样本不平衡等问题。最后, 通过对慢性肾病分级、丙型肝炎预测、乳腺癌诊断和糖尿病诊断的实验结果验证了该方法的有效性和优越性。

关键词: 在线学习, 人在回路, 置信规则库, 疾病诊断, 样本分析

Abstract:

In medical practice, acquiring physiologic indicators from patients is key for diagnosing disease. However, the physiological data of patients are typically uncertain and ambiguous. Belief Rule Base(BRB) is an expert-system approach that efficiently addresses various uncertain and ambiguous information by combining expert knowledge to transform data into confidence distributions. However, current BRB-based disease-diagnosis models rely on offline training methods, which are insufficient for satisfying the dynamic real-time requirements in disease-diagnosis environments. Additionally, existing online models in other fields are affected by the issues of numerous training-data samples and sample imbalance. Therefore, in this study, we propose an online BRB disease-diagnosis method based on a human-in-the-loop strategy. First, the conventional offline training BRB disease-diagnosis model is improved into an online training model such that the model can realize dynamic growth based on different patients' physiological indicators. Second, a human-in-the-loop algorithm is proposed for the online-learning BRB model to enhance the decision-making ability of experts. The proposed method effectively solves the issues of numerous training samples, overfitting of model output, and sample imbalance encountered in conventional online models. Finally, the effectiveness and superiority of the method are verified through experiments pertaining to chronic kidney-disease grading, hepatitis-C prediction, breast-cancer diagnosis, and diabetes diagnosis.

Key words: online learning, human-in-the-loop, Belief Rule Base(BRB), disease diagnosis, sample analysis