1 |
翟婷婷, 高阳, 朱俊武. 面向流数据分类的在线学习综述. 软件学报, 2020, 31(4): 912- 931.
URL
|
|
ZHAI T T, GAO Y, ZHU J W. Survey of online learning algorithms for streaming data classification. Journal of Software, 2020, 31(4): 912- 931.
URL
|
2 |
WANG D, IRANI D, PU C. Evolutionary study of Web Spam: Webb Spam corpus 2011 versus Webb Spam corpus 2006[C]//Proceedings of the 8th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing. Washington D. C., USA: IEEE Press, 2012: 40-49.
|
3 |
XIE W, ZHU F D, JIANG J, et al. TopicSketch: real-time bursty topic detection from Twitter. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8): 2216- 2229.
doi: 10.1109/TKDE.2016.2556661
|
4 |
MARTINEZ-RÍOS E, MONTESINOS L, ALFARO-PONCE M, et al. A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data. Biomedical Signal Processing and Control, 2021, 68, 102813.
doi: 10.1016/j.bspc.2021.102813
|
5 |
MALAVE N, NIMKAR A V. A survey on effects of class imbalance in data pre-processing stage of classification problem. International Journal of Computational Systems Engineering, 2020, 6(2): 63- 75.
doi: 10.1504/IJCSYSE.2020.111203
|
6 |
YOU D L, XIAO J W, WANG Y, et al. Online learning from incomplete and imbalanced data streams. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 10650- 10665.
doi: 10.1109/TKDE.2023.3250472
|
7 |
ZHANG Q, ZHANG P, LONG G D, et al. Online learning from trapezoidal data streams. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2709- 2723.
doi: 10.1109/TKDE.2016.2563424
|
8 |
HOU B J, ZHANG L, ZHOU Z H. Learning with feature evolvable streams. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(6): 2602- 2615.
|
9 |
HE Y, WU B J, WU D, et al. Toward mining capricious data streams: a generative approach. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(3): 1228- 1240.
|
10 |
BEYAZIT E, ALAGURAJAH J, WU X D. Online learning from data streams with varying feature spaces. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3232- 3239.
doi: 10.1609/aaai.v33i01.33013232
|
11 |
李昂, 韩萌, 穆栋梁, 等. 多类不平衡数据分类方法综述. 计算机应用研究, 2022, 39(12): 3534- 3545.
URL
|
|
LI A, HAN M, MU D L, et al. Survey of multi-class imbalanced data classification methods. Application Research of Computers, 2022, 39(12): 3534- 3545.
URL
|
12 |
CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost: improving prediction of the minority class in boosting[C]//Proceedings of the 2003 European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Germany: Springer, 2003: 107-119.
|
13 |
CHEN S, HE H B, GARCIA E A. RAMOBoost: ranked minority oversampling in boosting. IEEE Transactions on Neural Networks, 2010, 21(10): 1624- 1642.
doi: 10.1109/TNN.2010.2066988
|
14 |
JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance. Journal of Big Data, 2019, 6(1): 27.
|
15 |
李莉, 任振康, 石可欣. 代价敏感的Boosting软件缺陷预测方法. 计算机工程, 2022, 48(3): 175- 180.
URL
|
|
LI L, REN Z K, SHI K X. Cost sensitive boosting software defect prediction method. Computer Engineering, 2022, 48(3): 175- 180.
URL
|
16 |
万建武, 杨明. 代价敏感学习方法综述. 软件学报, 2020, 31(1): 113- 136.
URL
|
|
WAN J W, YANG M. Survey on cost-sensitive learning method. Journal of Software, 2020, 31(1): 113- 136.
URL
|
17 |
WANG J L, ZHAO P L, HOI S C H. Cost-sensitive online classification. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(10): 2425- 2438.
|
18 |
ZHAO P L, ZHANG Y F, WU M, et al. Adaptive cost-sensitive online classification. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 214- 228.
|