[1] STANISIC L, THIBAULT S, LEGRAND A, et al.Modeling and simulation of a dynamic task-based runtime system for heterogeneous multi-core architectures[C]//Proceedings of European Conference on Parallel Processing.Berlin, Germany:Springer, 2014:50-62. [2] MITTAL S, VETTER J S.A survey of CPU-GPU heterogeneous computing techniques[J].ACM Computing Surveys, 2015, 47(4):1-35. [3] 2018-2019年中国IDC产业发展研究报告[EB/OL].[2020-05-02].http://www.idcquan.com/Special/2019baogao/. Research report on China's IDC industry development in 2018-2019[EB/OL].[2020-05-02].http://www.idcquan.com/Special/2019baogao/. (in Chinese) [4] 周悦芝, 张迪.近端云计算:后云计算时代的机遇与挑战[J].计算机学报, 2019, 42(4):677-700. ZHOU Y Z, ZHANG D.Near-end cloud computing:opportunities and challenges in the post-cloud computing era[J].Chinese Journal of Computers, 2019, 42(4):677-700.(in Chinese) [5] SHEHABI A, SMITH S, SARTOR D, et al.United states data center energy usage report[EB/OL].[2020-05-02].https://datacenters.lbl.gov/sites/all/files/DataCenterEnergyReport2016_0.pdf. [6] KOOMEY J.Growth in datacenter electricity use 2005 to 2010[EB/OL].[2020-05-02].https://alejandrobaros.com/wp-content/uploads/old/Growth_in_Data_Center_Electricity_use_2005_to_2010.pdf. [7] ANDERSON D, CADER T, DARBY T, et al.A framework for data center energy productivity[EB/OL].[2020-05-02].https://www.greenbiz.com/sites/default/files/document/GreenGrid-Framework-Data-Center-Energy-Productivity.pdf. [8] DI S, KONDO D, CIRNE W.Characterization and comparison of cloud versus grid workloads[C]//Proceedings of 2012 IEEE International Conference on Cluster Computing.Washington D.C., USA:IEEE Press, 2012:230-238. [9] AKIOKA S, MURAOKA Y.Extended forecast of CPU and network load on computational grid[C]//Proceedings of IEEE International Symposium on Cluster Computing and the Grid.Washington D.C., USA:IEEE Press, 2004:765-772. [10] DUY T V T, SATO Y, INOGUCHI Y.Improving accuracy of host load predictions on computational grids by artificial neural networks[J].International Journal of Parallel, Emergent and Distributed Systems, 2011, 26(4):275-290. [11] WU Y, YUAN Y, YANG G, et al.Load prediction using hybrid model for computational grid[C]//Proceedings of 2007 IEEE/ACM International Conference on Grid Computing.Washington D.C., USA:IEEE Press, 2007:235-242. [12] SONG B, YU Y, ZHOU Y, et al.Host load prediction with long short-term memory in cloud computing[J].The Journal of Supercomputing, 2018, 74(12):6554-6568. [13] REISS C, WILKES J, HELLERSTEIN J L.Google cluster-usage traces:format+ schema[EB/OL].[2020-05-02].https://doc.xuehai.net/b6b3e8bbdda2ddc251146efd5.html. [14] GUENTER B, JAIN N, WILLIAMS C.Managing cost, performance, and reliability tradeoffs for energyaware server provisioning[EB/OL].[2020-05-02].https://www.microsoft.com/en-us/research/wp-content/uploads/2011/06/guenter11managing.pdf. [15] ZHANG Q, ZHANI M F, ZHANG S, et al.Dynamic energy-aware capacity provisioning for cloud computing environments[C]//Proceedings of the 9th International Conference on Autonomic Computing.New York, USA:ACM Press, 2010:145-154. [16] BARATI M, SHARIFIAN S.A hybrid heuristic-based tuned support vector regression model for cloud load prediction[J].The Journal of Supercomputing, 2015, 71(11):4235-4259. [17] 江伟, 陈羽中, 黄启成, 等.一种云环境下的主机负载预测方法[J].计算机科学, 2018, 45(6A):270-274. JIANG W, CHEN Y Z, HUANG Q C, et al.Workload forecasting method in cloud[J].Computer Science, 2018, 45(6A):270-274.(in Chinese) [18] DI S, KONDO D, CIRNE W.Host load prediction in a Google compute cloud with a Bayesian model[C]//Proceedings of International Conference on High Performance Computing, Networking, Storage and Analysis.Washington D.C., USA:IEEE Press, 2021:12-23. [19] YANG Q, ZHOU Y, YU Y, et al.Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing[J].The Journal of Supercomputing, 2015, 71(8):3037-3053. [20] WERBOS P J.Backpropagation through time:what it does and how to do it[J].Proceedings of the IEEE, 1990, 78(10):1550-1560. |