作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (9): 84-89. doi: 10.19678/j.issn.1000-3428.0058561

• 人工智能与模式识别 • 上一篇    下一篇

基于深度学习的主机负载在线预测模型研究

钱声攀1, 于洋2, 翟天一1, 张徐东3, 常彦博2   

  1. 1. 中国电力科学研究院有限公司信息通信研究所, 北京 100192;
    2. 中国科学院计算技术研究所, 北京 100190;
    3. 中国科学院大学 人工智能学院, 北京 100049
  • 收稿日期:2020-06-08 修回日期:2020-08-20 发布日期:2020-09-04
  • 作者简介:钱声攀(1983-),男,高级工程师、硕士,主研方向为电力数据中心能效优化;于洋,硕士研究生;翟天一,硕士;张徐东,硕士研究生;常彦博,工程师、硕士。
  • 基金资助:
    国家重点研发计划(2017YFB1010001)。

Research on Online Prediction Model of Host Load Based on Deep Learning

QIAN Shengpan1, YU Yang2, ZHAI Tianyi1, ZHANG Xudong3, CHANG Yanbo2   

  1. 1. Institute of Information and Communication, China Electric Power Research Institute, Beijing 100192, China;
    2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
    3. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-06-08 Revised:2020-08-20 Published:2020-09-04

摘要: 数据中心主机负载预测对于数据中心的资源调度和节能具有重要意义,但是目前缺乏一个通用模型以准确预测所有类型数据中心的主机负载情况。为了使主机负载预测模型具有一定的自适应性,提出一种基于深度循环神经网络编码器-解码器的多步在线预测模型。通过线上实时采集的能耗数据进行在线训练,同时设计一个在线监控模块,对模型的预测准确性进行实时监控和调整,使得该模型在不同数据中心中均能获得较准确的预测值。利用Google开源的时长为29天的数据中心主机负载数据集进行实验,结果表明,该模型的预测准确性接近离线训练,其预测性能优于ESN和LSTM模型。

关键词: 主机负载预测, 深度学习, 循环神经网络, 在线学习, 数据中心

Abstract: Host load prediction plays a key role in data center resource scheduling and energy saving, but there is no universal model that can accurately predict the host load of all types of data centers.In order to improve the adaptability of host load prediction, this paper proposes a multi-step online prediction model based on a deep cyclic neural network encoder-decoder.The model is trained online with energy consumption data collected in real time.In addition, an online monitoring module is designed to monitor and adjust the prediction accuracy of the model in real time, so that the model can obtain more accurate prediction results in different data centers.Experiments are carried out on a data set open-sourced by Google, which contains host loads of a data center spanning 29 days.The experimental results show that the proposed model displays similar prediction accuracy to the models trained offline, and its prediction performance is better than that of ESN and LSTM.

Key words: prediction of host load, deep learning, Recurrent Neural Network(RNN), online learning, data center

中图分类号: