1 |
AYALL T A, LIU H W, ZHOU C J, et al. Graph computing systems and partitioning techniques: a survey. IEEE Access, 2022, 10, 118523- 118550.
doi: 10.1109/ACCESS.2022.3219422
|
2 |
LIU N, LI D S, ZHANG Y M, et al. Large-scale graph processing systems: a survey. Frontiers of Information Technology & Electronic Engineering, 2020, 21(3): 384- 404.
|
3 |
MAZAHERI S N, FATEMI A, NEMATBAKHSH M. An investigation of big graph partitioning methods for distribution of graphs in vertex-centric systems. Distributed and Parallel Databases, 2020, 38(1): 1- 29.
doi: 10.1007/s10619-019-07256-z
|
4 |
GHOSH S, DAS N, GONÇALVES T, et al. The journey of graph kernels through two decades. Computer Science Review, 2018, 27, 88- 111.
doi: 10.1016/j.cosrev.2017.11.002
|
5 |
GUI C Y, ZHENG L, HE B S, et al. A survey on graph processing accelerators: challenges and opportunities. Journal of Computer Science and Technology, 2019, 34(2): 339- 371.
doi: 10.1007/s11390-019-1914-z
|
6 |
GONZALEZ J E, LOW Y, GU H J, et al. PowerGraph: distributed graph-parallel computation on natural graphs[C]//Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation. Hollywood, USA: USENIX Association, 2012: 17-30.
|
7 |
ARIDHI S, MONTRESOR A, VELEGRAKIS Y. BLADYG: a graph processing framework for large dynamic graphs. Big Data Research, 2017, 9, 9- 17.
doi: 10.1016/j.bdr.2017.05.003
|
8 |
FAN W F, HE T, LAI L B, et al. GraphScope. Proceedings of the VLDB Endowment, 2021, 14(12): 2879- 2892.
doi: 10.14778/3476311.3476369
|
9 |
SHI X H, ZHENG Z G, ZHOU Y L, et al. Graph processing on GPUs. ACM Computing Surveys, 2018, 50(6): 1- 35.
|
10 |
ZHANG T, ZHANG J J, SHU W, et al. Efficient graph computation on hybrid CPU and GPU systems. The Journal of Supercomputing, 2015, 71(4): 1563- 1586.
doi: 10.1007/s11227-015-1378-z
|
11 |
JIA Z H, KWON Y, SHIPMAN G, et al. A distributed multi-GPU system for fast graph processing. Proceedings of the VLDB Endowment, 2017, 11(3): 297- 310.
doi: 10.14778/3157794.3157799
|
12 |
WANG Y Z H, PANY C, DAVIDSON A, et al. Gunrock: GPU graph analytics. ACM Transactions on Parallel Computing, 2017, 4(1): 2329- 4949.
|
13 |
ZHOU S J, KANNAN R, PRASANNA V K, et al. HitGraph: high-throughput graph processing framework on FPGA. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(10): 2249- 2264.
doi: 10.1109/TPDS.2019.2910068
|
14 |
MIAO X P, MA L X, YANG Z, et al. CuWide: towards efficient flow-based training for sparse wide models on GPUs. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4119- 4132.
doi: 10.1109/TKDE.2020.3038109
|
15 |
ZHU H Z, HE L G, LEEKE M, et al. WolfGraph: the edge-centric graph processing on GPU. Future Generation Computer Systems, 2020, 111, 552- 569.
doi: 10.1016/j.future.2019.09.052
|
16 |
WANG P Y, WANG J, LI C, et al. Grus. ACM Transactions on Architecture and Code Optimization, 2021, 18(2): 1- 25.
|
17 |
ZHANG Y, PENG D, LIAO X F, et al. LargeGraph. ACM Transactions on Architecture and Code Optimization, 2021, 18(4): 1- 24.
|
18 |
YANG C, BULUÇ A, OWENS J D. GraphBLAST: a high-performance linear algebra-based graph framework on the GPU. ACM Transactions on Mathematical Software, 2022, 48(1): 1- 51.
|
19 |
蒋筱斌, 熊轶翔, 张珩, 等. ChattyGraph: 面向异构多协处理器环境的高可扩展图计算系统. 软件学报, 2023, 34(4): 1977- 1996.
|
|
JIANG X B, XIONG Y X, ZHANG H, et al. ChattyGraph: highly scalable graph computing system for heterogeneous multi accelerators. Journal of Software, 2023, 34(4): 1977- 1996.
|
20 |
FAN W F, XU J B, WU Y H, et al. Parallelizing sequential graph computations[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York, USA: ACM Press, 2017: 495-510.
|
21 |
钱裳云, 邵志远, 郑然, 等. 图数据库中基于GPU的图分析计算方法. 计算机工程, 2021, 47(6): 52- 59.
doi: 10.19678/j.issn.1000-3428.0057965
|
|
QIAN S Y, SHAO Z Y, ZHENG R, et al. GPU-based graph analysis and computation method for graph database. Computer Engineering, 2021, 47(6): 52- 59.
doi: 10.19678/j.issn.1000-3428.0057965
|
22 |
王晓峰, 于卓, 赵健, 等. 大规模图例的最大团问题算法分析. 计算机工程, 2022, 48(6): 182-192, 199.
doi: 10.19678/j.issn.1000-3428.0063092
|
|
WANG X F, YU Z, ZHAO J, et al. Algorithm analysis for solving maximum clique problems of large-scale graphs. Computer Engineering, 2022, 48(6): 182-192, 199.
doi: 10.19678/j.issn.1000-3428.0063092
|
23 |
HUANG J, WANG H, FEI X, et al. TCStream: large-scale graph triangle-counting on a single Machine using GPUs. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(11): 3067- 3078.
|
24 |
PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the Web[C]//Proceedings of the Web Conference. [S. l. ]: International World Wide Web Conference Committee, 1999: 1-10.
|
25 |
|
26 |
FENG X, CHANG L J, LIN X M, et al. Distributed computing connected components with linear communication cost. Distributed and Parallel Databases, 2018, 36(3): 555- 592.
|
27 |
MALEKI S, NGUYEN D, LENHARTH A, et al. DSMR: a shared and distributed memory algorithm for single-source shortest path problem[C]//Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, USA: ACM Press, 2016: 1-10.
|
28 |
|
29 |
LESKOVEC J, LANG K J, DASGUPTA A, et al. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 2009, 6(1): 29- 123.
|