1 |
FAN L J, LI T H, FANG R Y, et al. Learning longterm representations for person re-identification using radio signals[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 10699-10709.
|
2 |
GU X Q , CHANG H , MA B P , et al. Appearance-preserving 3D convolution for video-based person re-identification. Berlin, Germany: Springer, 2020.
|
3 |
SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 501-518.
|
4 |
JIN X, HE T Y, ZHENG K C, et al. Cloth-changing person re-identification from a single image with gait prediction and regularization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 14278-14287.
|
5 |
YU S J, LI S H, CHEN D P, et al. COCAS: a large-scale clothes changing person dataset for re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 3400-3409.
|
6 |
YANG Q , WU A , ZHENG W S . Person re-identification by contour sketch under moderate clothing change. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (6): 2029- 2046.
doi: 10.1109/TPAMI.2019.2960509
|
7 |
QIAN X L, WANG W X, ZHANG L, et al. Long-term cloth-changing person re-identification[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2021: 71-88.
|
8 |
CHEN J X, JIANG X Y, WANG F D, et al. Learning 3D shape feature for texture-insensitive person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 8146-8155.
|
9 |
LI Y J, LUO Z Y, WENG X S, et al. Learning shape representations for clothing variations in person re-identification[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2003.07340v1.
|
10 |
SHU X J , LI G , WANG X , et al. Semantic-guided pixel sampling for cloth-changing person re-identification. IEEE Signal Processing Letters, 2021, 28, 1365- 1369.
doi: 10.1109/LSP.2021.3091924
|
11 |
HAN K, GONG S, HUANG Y, et al. Clothing-change feature augmentation for person re-identi\ufb01cation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 22066-22075.
|
12 |
YANG Z W, LIN M, ZHONG X, et al. Good is bad: causality inspired cloth-debiasing for cloth-changing person re-identification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 1472-1481.
|
13 |
HUANG Y, WU Q, XU J S, et al. Clothing status awareness for long-term person re-identification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 11895-11904.
|
14 |
YAN Y M, YU H M, LI S Z, et al. Weakening the influence of clothing: universal clothing attribute disentanglement for person re-identification[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2022: 1523-1529.
|
15 |
GU X Q, CHANG H, MA B P, et al. Clothes-changing person re-identification with RGB modality only[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 1060-1069.
|
16 |
CUI Z Y , ZHOU J H , PENG Y X , et al. DCR-ReID: deep component reconstruction for cloth-changing person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (8): 4415- 4428.
doi: 10.1109/TCSVT.2023.3241988
|
17 |
MU J Y, LI Y, LI J Y, et al. Learning clothes-irrelevant cues for clothes-changing person re-identification[C]//Proceedings of British Machine Vision Conference. London, UK: [s. n. ], 2023: 253-268.
|
18 |
HAN K, HUANG Y, GONG S G, et al. 3D shape temporal aggregation forVideo-based clothing-change person re-identification[C]//Proceedings of ACCV'22. Washington D.C., USA: IEEE Press, 2023: 71-88.
|
19 |
WAN F B, WU Y, QIAN X L, et al. When person re-identification meets changing clothes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 830-831.
|
20 |
ZHU K, GUO H Y, LIU Z W, et al. Identity-guided human semantic parsing for person re-identification[C]//Proceedings of ECCV'20. Berlin, Germany: Springer, 2020: 346-363.
|
21 |
ADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of International Conference on Machine Learning. Washington D.C., USA: IEEE Press, 2021: 8748-8763.
|
22 |
CAO M, YANG T Y, WENG J W, et al. LocVTP: video-text pre-training for temporal localization[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 38-56.
|
23 |
LI S Y , SUN L , LI Q L . CLIP-ReID: exploiting vision-language model for image re-identification without concrete text labels. Artificial Intelligence, 2023, 37 (1): 1405- 1413.
|
24 |
ZHAO S, ZHU L C, WANG X H, et al. CenterCLIP[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 970-981.
|
25 |
TANG M K, WANG Z Y, LIU Z H, et al. CLIP4Caption: CLIP for video caption[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4858-4862.
|
26 |
WANG Z Q, LU Y, LI Q, et al. CRIS: CLIP-driven referring image segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 11686-11695.
|
27 |
RAO Y M, ZHAO W L, CHEN G Y, et al. DenseCLIP: language-guided dense prediction with context-aware prompting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 18082-18091.
|
28 |
ZHANG R R, GUO Z Y, ZHANG W, et al. PointCLIP: point cloud understanding by CLIP[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 8552-8562.
|