1 |
翁氏根, 赫丹, 王阳, 等. 扣件失效对城市轨道交通列车-浮置板式轨道系统竖向振动响应的影响. 铁道科学与工程学报, 2008, 5 (2): 29- 33.
|
|
WENG S G , HE D , WANG Y , et al. Influence of fastener failure on responses of vertical vibration of urban rail transit train-floating slab track system. Journal of Railway Science and Engineering, 2008, 5 (2): 29- 33.
|
2 |
GIBERT X , PATEL V M , CHELLAPPA R , et al. Deep multitask learning for railway track inspection. IEEE Transactions on Intelligent Transportation Systems, 2016, 18 (1): 153- 164.
|
3 |
MAIWALDL D , FASS U , LITSCHKE H . Railcheck system: automated optoelectronic inspection of rail systems. Der Eisenbahningenieur, 1998, (7): 33- 37.
|
4 |
张未. 德国RAILCHECK光电式自动化钢轨检测系统在轨道检查车中的应用. 哈尔滨铁道科技, 2001, (4): 3- 4.
|
|
ZHANG W . Application of German RAILCHECK photoelectric automatic rail detection system in track inspection vehicles. Harbin Railway Technology, 2001, (4): 3- 4.
|
5 |
STELLA E, MAZZEO P, NITTI M, et al. Visual recognition of missing fastening elements for railroad maintenance[C]//Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2002: 94-99.
|
6 |
贾利红. 基于DSP的高速轨道扣件检测算法研究及系统设计[D]. 成都: 电子科技大学, 2014.
|
|
JIA L H. Research of the detection algorithm and design the system on high speed railway fastener based on DSP[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese)
|
7 |
钱广春. 基于计算机视觉的铁路扣件缺失快速探测方法研究[D]. 上海: 上海交通大学, 2011.
|
|
QIAN G C. Research of the rapid detection method on missing railway fastener based on computer vision[D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese)
|
8 |
李彧雯. 轨道部件图像检测系统设计[D]. 南昌: 南昌大学, 2012.
|
|
LI Y W. The design of railway components image detection system[D]. Nanchang: Nanchang University, 2012. (in Chinese)
|
9 |
WEI X K , YANG Z M , LIU Y X , et al. Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study. Engineering Applications of Artificial Intelligence, 2019, 80, 66- 81.
doi: 10.1016/j.engappai.2019.01.008
|
10 |
史燕燕, 史殿习, 乔子腾, 等. 小样本目标检测研究综述. 计算机学报, 2023, 46 (8): 1753- 1780.
|
|
SHI Y Y , SHI D X , QIAO Z T , et al. A survey on recent advances in few-shot object detection. Chinese Journal of Computers, 2023, 46 (8): 1753- 1780.
|
11 |
CHEN J W , LIU Z G , WANG H R , et al. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 2018, 67 (2): 257- 269.
doi: 10.1109/TIM.2017.2775345
|
12 |
李嘉新, 侯进, 盛博莹, 等. 基于改进YOLOv5的遥感小目标检测网络. 计算机工程, 2023, 49 (9): 48, 256-264.
URL
|
|
LI J X , HOU J , SHENG B Y , et al. Remote sensing small object detection network based on improved YOLOv5. Computer Engineering, 2023, 49 (9): 48, 256-264.
URL
|
13 |
BOCHKOVSKIY A, WANG C Y, MARK LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-09-07]. https://arxiv.org/abs/2004.10934.
|
14 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[EB/OL]. (2015-06-08)[2023-09-07]. https://arxiv.org/abs/1506.02640.
|
15 |
HEGISTE V, LEGLER T, RUSKOWSKI M. Federated ensemble YOLOv5: a better generalized object detection algorithm[EB/OL]. (2023-06-30)[2023-09-07]. https://arxiv.org/abs/2306.17829.
|
16 |
|
17 |
|
18 |
|
19 |
LI Y D , HAN Z Q , XU H Y , et al. YOLOv3-Lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutions. Applied Sciences, 2019, 9 (18): 3781.
doi: 10.3390/app9183781
|
20 |
|
21 |
陈智超, 焦海宁, 杨杰, 等. 基于改进MobileNet v2的垃圾图像分类算法. 浙江大学学报(工学版), 2021, 55 (8): 1490- 1499.
|
|
CHEN Z C , JIAO H N , YANG J , et al. Garbage image classification algorithm based on improved MobileNet v2. Journal of Zhejiang University (Engineering Science), 2021, 55 (8): 1490- 1499.
|
22 |
HU J , WANG Z B , CHANG M J , et al. PSG-Yolov5: a paradigm for traffic sign detection and recognition algorithm based on deep learning. Symmetry, 2022, 14 (11): 2262.
|
23 |
|
24 |
|
25 |
|