作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 317-327. doi: 10.19678/j.issn.1000-3428.0069366

• 开发研究与工程应用 • 上一篇    下一篇

一种基于迁移学习的双代理辅助船型优化方法

安畅1, 毛力1,2,3,*()   

  1. 1. 江南大学人工智能与计算机学院, 江苏 无锡 214122
    2. 江南大学先进技术研究院, 江苏 无锡 214122
    3. 江苏省模式识别与计算机智能工程实验室, 江苏 无锡 214122
  • 收稿日期:2024-02-06 修回日期:2024-05-08 出版日期:2025-09-15 发布日期:2024-08-22
  • 通讯作者: 毛力
  • 基金资助:
    船舶总体性能创新研究开放基金(26322209)

A Transfer Learning Based Dual-Surrogate-Assisted Hull Form Optimization Method

AN Chang1, MAO Li1,2,3,*()   

  1. 1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, Jiangsu, China
    2. Institute of Advanced Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
    3. Jiangsu Engineering Laboratory of Pattern Recognition and Computer Intelligence, Wuxi 214122, Jiangsu, China
  • Received:2024-02-06 Revised:2024-05-08 Online:2025-09-15 Published:2024-08-22
  • Contact: MAO Li

摘要:

在昂贵目标函数的代理辅助优化中,获取足量样本在流体仿真中会相当耗时。为了减少所需样本量并提高问题的求解性能,提出了一种基于迁移学习双代理辅助的船型优化算法(TLDSAO)。首先,在代理构建阶段采用了迁移学习来辅助建模,利用迁移源域知识到目标域来减少对船型样本数量的需求。其次,针对样本数据构建了粗代理模型和细代理模型,用以进行双代理的辅助优化,该过程通过引入外部公共池来进行双代理间种群信息的交换,以提高优化算法的搜索性能。最后,将TLDSAO算法应用在KCS的船型优化实验上,实验结果表明在相同样本量下,迁移学习的加入显著提高了代理模型的准确性,在达到相同精度的情况下相比未加入迁移学习时能减少约1/2的样本量。通过TLDSAO算法最终使得KCS的总阻力系数降低了10.85%,预测误差为2.93%,相较于同条件下的3种对比方法其优化结果进一步减少了0.61%、6.11%和1.56%,并且对比方法在增加40个样本后的效果才接近未增加样本的TLDSAO算法。因此,即使在更少样本量下,TLDSAO算法也能获得更优的解和更低的预测误差。

关键词: 优化算法, 迁移学习, 代理辅助优化, 船型设计, 计算流体力学

Abstract:

In the surrogate-assisted optimization of expensive objective functions, obtaining enough samples is time-consuming in fluid simulations. This paper proposes a Transfer Learning based Dual-Surrogate-Assisted hull form Optimization (TLDSAO) algorithm to reduce the required number of samples and improve the solving performance of the problem. Firstly, transfer learning is used to assist modeling during the surrogate construction phase, utilizing transfer of source domain knowledge to the target domain to reduce the demand for hull form samples. Secondly, the coarse surrogate and fine surrogate models are constructed for the sample data to perform the dual-surrogate-assisted optimization. For this purpose, an external public pool is introduced to exchange population information between the two surrogates to improve the search performance of the optimization algorithm. Finally, the proposed method is applied to a hull form optimization experiment of KCS. Experimental results show that under the same sample size, the addition of transfer learning significantly improves the accuracy of the surrogate model and can reduce the sample size by approximately half compared to the algorithm without transfer learning with the same accuracy. The TLDSAO algorithm reduces the total drag coefficient of KCS by 10.85%, with a prediction error of 2.93%. Compared with three comparison methods under the same conditions, the optimization results are further reduced by 0.61%, 6.11%, and 1.56%, respectively. Comparison methods achieve a performance comparable to that of the TLDSAO algorithm only when the sample size is increased by 40. Despite fewer samples, the TLDSAO algorithm achieves better solutions and lower prediction errors.

Key words: optimization algorithm, transfer learning, surrogate-assisted optimization, hull form design, computational fluid dynamics