作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (6): 287-295. doi: 10.19678/j.issn.1000-3428.0067836

• 图形图像处理 • 上一篇    下一篇

基于边缘计算的轻量化识别方法

李致金, 汤佳辉, 闫金凤   

  1. 南京信息工程大学人工智能学院, 江苏 南京 210044
  • 收稿日期:2023-06-11 修回日期:2023-09-07 发布日期:2023-10-30
  • 通讯作者: 李致金,E-mail:lizhijin@nuist.edu.cn E-mail:lizhijin@nuist.edu.cn
  • 基金资助:
    国家自然科学基金委员会面上项目(61771248)。

Lightweight Recognition Method Based on Edge Computing

LI Zhijin, TANG Jiahui, YAN Jinfeng   

  1. School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Received:2023-06-11 Revised:2023-09-07 Published:2023-10-30

摘要: “新零售”模式的出现,对传统零售业的转型以及提升用户消费体验具有重要意义。然而,目前市场上的无人水果秤大多存在一些问题,如识别率低、模型结构复杂、部署困难、模型推理实时性差等。针对这些问题,提出一种基于边缘计算的轻量化识别方法。选用MobileNext作为主干网络,引入轻量型的注意力模块CBAM改进MobileNext中的SandGlass模块。利用Ghost模块替换SandGlass模块中的标准1×1卷积,以压缩模型的参数量和运算量。在此基础上,使用迁移学习的策略搭配NAdam优化器训练改进后的MobileNext模型,进一步提高模型的识别精度。在Fruit Recognition数据集上的实验结果表明,该方法在水果识别任务中达到了98.95%的识别准确率,优于原MobileNext、MobileNetV2和EfficientNet-B0等轻量级模型。相较于原MobileNext模型,改进后的MobileNext模型识别准确率提高了1.17个百分点,参数量仅为1.775×106,推理时间仅为16.5 ms。在实际的零售场景中,所提方法只需很小的参数量和运算量就能实现较好的识别效果,并能够部署在边缘设备上。

关键词: 深度学习, 注意力模块, 轻量级模型, 迁移学习, 边缘设备

Abstract: The emergence of the "new retail" model has significant implications in transforming the traditional retail industry and providing enhanced consumer experience. However, existing unmanned fruit weighing scales in the market still face several challenges, such as low recognition rates, complex model structures, deployment difficulties, and poor real-time inference capabilities. To address these issues, this study proposes a lightweight recognition method based on edge computing. First, MobileNext was selected as the backbone network. Second, the Convolutional Block Attention Module (CBAM), was introduced, as a lightweight attention module, to improve the SandGlass module in MobileNext. Subsequently, the Ghost module was utilized to replace the standard 1×1 convolution in the SandGlass module, thereby reducing the number of model parameters and computational complexity. Finally, the improved MobileNext model was trained using a transfer learning strategy combined with Nesterov-accelerated Adaptive moment estimation (NAdam) optimizer to further enhance recognition accuracy. In experiments on the Fruit Recognition dataset, the proposed recognition method achieved a recognition accuracy of 98.95%, outperforming lightweight models, such as the original MobileNext model, MobileNetV2, and EfficientNet-B0. Compared to the original MobileNext model, the improved MobileNext model achieved a 1.17 percentage points increase in recognition accuracy with only 1.775 million parameters and an inference time of only 16.5 ms. In practical retail scenarios, this method requires minimal parameters and computational resources to achieve satisfactory recognition performance and has been successfully deployed on edge devices.

Key words: deep learning, attention module, lightweight model, transfer learning, edge devices

中图分类号: