[1] 邹谜,伍世虔,王欣.一种用于机器人水果采摘的快速识别方法[J].农机化研究, 2019, 41(1):206-210, 252. ZOU M, WU S Q, WANG X. A fast matching recognition method for fruit picking[J]. Journal of Agricultural Mechanization Research, 2019, 41(1):206-210, 252.(in Chinese) [2] 余长庚,刘凯.基于小波变换与Otsu阈值去噪的脐橙识别方法[J].华南农业大学学报, 2020, 41(5):109-114. YU C G, LIU K. Navel orange recognition based on wavelet transform and Otsu threshold denoising[J]. Journal of South China Agricultural University, 2020, 41(5):109-114.(in Chinese) [3] YU L Y, XIONG J T, FANG X Q, et al. A litchi fruit recognition method in a natural environment using RGB-D images[J]. Biosystems Engineering, 2021, 204:50-63. [4] 洪奇峰,施伟斌,吴迪,等.深度卷积神经网络模型发展综述[J].软件导刊, 2020, 19(4):84-88. HONG Q F, SHI W B, WU D, et al. Review of the development of deep convolutional neural network model[J]. Software Guide, 2020, 19(4):84-88.(in Chinese) [5] 盖荣丽,蔡建荣,王诗宇,等.卷积神经网络在图像识别中的应用研究综述[J].小型微型计算机系统, 2021, 42(9):1980-1984. GAI R L, CAI J R, WANG S Y, et al. Research review on image recognition based on deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(9):1980-1984.(in Chinese) [6] 季长清,高志勇,秦静,等.基于卷积神经网络的图像分类算法综述[J].计算机应用, 2022, 42(4):1044-1049. JI C Q, GAO Z Y, QIN J, et al. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4):1044-1049.(in Chinese) [7] 王春雷,张建林,李美惠,等.结合卷积Transformer的目标跟踪算法[J].计算机工程, 2023, 49(4):281-288, 296. WANG C L, ZHANG J L, LI M H, et al. Object tracking algorithm combining convolution and Transformer[J]. Computer Engineering, 2023, 49(4):281-288, 296.(in Chinese) [8] 石磊,张吉涛,高宇飞,等.基于Transformer与BiLSTM的网络流量入侵检测[J].计算机工程, 2023, 49(3):29-36, 57. SHI L, ZHANG J T, GAO Y F, et al. Intrusion detection of network traffic based on Transformer and BiLSTM[J]. Computer Engineering, 2023, 49(3):29-36, 57.(in Chinese) [9] 白俊卿,韩柏迅,张丰侠.基于深度学习的无人机图像语义分割算法研究[J].计算机工程, 2023, 49(4):233-239. BAI J Q, HAN B X, ZHANG F X. Deep learning-based UAV image semantic segmentation algorithm research[J]. Computer Engineering, 2023, 49(4):233-239.(in Chinese) [10] 王朕,李豪,严冬梅,等.基于改进YOLOv5的路面病害检测模型[J].计算机工程, 2023, 49(2):15-23. WANG Z, LI H, YAN D M, et al. Pavement disease detection model based on improved YOLOv5[J]. Computer Engineering, 2023, 49(2):15-23.(in Chinese) [11] 朱玲.基于K-means聚类算法分类的水果等级识别与应用[J].农机化研究, 2020, 42(8):46-50. ZHU L. Recognition and application of fruit classification based on K-means clustering algorithms[J]. Journal of Agricultural Mechanization Research, 2020, 42(8):46-50.(in Chinese) [12] 张继成,李德顺.基于深度残差学习的成熟草莓识别方法[J].中国农机化学报, 2022, 43(2):136-142. ZHANG J C, LI D S. Ripe strawberry recognition method based on deep residual learning[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2):136-142.(in Chinese) [13] LI Z B, LI F, ZHU L, et al. Vegetable recognition and classification based on improved VGG deep learning network model[J]. International Journal of Computational Intelligence Systems, 2020, 13(1):559-564. [14] DUONG L T, NGUYEN P T, DI S C, et al. Automated fruit recognition using EfficientNet and MixNet[J]. Computers and Electronics in Agriculture, 2020, 171:105326. [15] ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of European Conference on Computer Vision. Berlin,Germany:Springer,2020:680-697. [16] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:4510-4520. [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016:13-25. [18] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017:122-135. [19] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin,Germany:Springer,2018:3-19. [20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:7132-7141. [21] HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2020:1580-1589. [22] TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[EB/OL].[2023-05-05].https://arxiv.org/abs/1808.01974. [23] RUDER S. An overview of gradient descent optimization algorithms[EB/OL].[2023-05-05].https://arxiv.org/abs/1609.04747. [24] HUSSAIN I, HE Q H, CHEN Z L, et al. Fruit Recognition dataset (V 1.0)[EB/OL].[2023-05-05].https://doi.org/10.5281/zenodo.1310165. [25] 周志华.机器学习[M].北京:清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016.(in Chinese) [26] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2017:618-626. |