1 |
FUJITA H . AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiological Physics and Technology, 2020, 13 (1): 6- 19.
|
2 |
XU A, LI W Q, GUO P F, et al. Closing the generalization gap of cross-silo federated medical image segmentation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 20834-20843.
|
3 |
YANG J Y, AN W Z, WANG S, et al. Label-driven reconstruction for domain adaptation in semantic segmentation[C]//Proceedings of Europe Conference on Computer Vision. Berlin, Germany: Springer, 2020: 480-498.
|
4 |
ZHOU K Y , LIU Z W , QIAO Y , et al. Domain generalization: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (4): 4396- 4415.
|
5 |
张驰名, 王庆凤, 刘志勤, 等. 基于深度迁移学习的肺结节辅助诊断方法. 计算机工程, 2020, 46 (1): 271- 278.
doi: 10.19678/j.issn.1000-3428.0053340
|
|
ZHANG C M , WANG Q F , LIU Z Q , et al. Pulmonary nodule auxiliary diagnosis method based on deep transfer learning. Computer Engineering, 2020, 46 (1): 271- 278.
doi: 10.19678/j.issn.1000-3428.0053340
|
6 |
ZHUANG F Z , QI Z Y , DUAN K Y , et al. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2021, 109 (1): 43- 76.
|
7 |
叶世杰, 王永雄. 基于图神经网络的WSI癌症生存预测方法. 光电工程, 2024, 51 (4): 240011.
|
|
Ye S J , Wang Y X . Graph neural network-based WSI cancer survival prediction method. Opto-Electronic Engineering, 2024, 51 (4): 240011.
|
8 |
|
9 |
HE J P, MAO R Y, SHAO Z M, et al. Incremental learning in online scenario[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 13923-13932.
|
10 |
MASANA M , LIU X L , TWARDOWSKI B , et al. Class-incremental learning: survey and performance evaluation on image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (5): 5513- 5533.
|
11 |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 5533-5542.
|
12 |
CASTRO F M, MARIN-JIMENEZ M J, GUIL N, et al. End-to-end incremental learning[C]//Proceedings of Europe Conference on Computer Vision. Berlin, Germany: Springer, 2018: 241-257.
|
13 |
WU Y, CHEN Y P, WANG L J, et al. Large scale incremental learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 374-382.
|
14 |
FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2020: 263-273.
|
15 |
KIM T, LEE H, KIM D. UACANet: uncertainty augmented context attention for polyp segmentation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 2167-2175.
|
16 |
CAI L H, WU M J, CHEN L J, et al. Using guided self-attention with local information for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2022: 629-638.
|
17 |
ZHANG Y D, LIU H Y, HU Q. TransFuse: fusing transformers and CNNs for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 14-24.
|
18 |
DUC N T , OANH N T , THUY N T , et al. ColonFormer: an efficient transformer based method for colon polyp segmentation. IEEE Access, 2022, 10, 80575- 80586.
|
19 |
LI Z Z , HOIEM D . Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (12): 2935- 2947.
|
20 |
RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1329-1337.
|
21 |
KIRKPATRICK J , PASCANU R , RABINOWITZ N , et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (13): 3521- 3526.
|
22 |
HOSPEDALES T , ANTONIOU A , MICAELLI P , et al. Meta-learning in neural networks: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 5149- 5169.
|
23 |
TING C, SIMON K, MOHAMMAD N, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020: 1597-1607.
|
24 |
任莉莉, 边璇, 王光磊, 等. 基于深度学习的息肉分割网络GLIA-Net. 计算机工程, 2022, 48 (12): 248- 254.
doi: 10.19678/j.issn.1000-3428.0062860
|
|
REN L L , BIAN X , WANG G L , et al. Polyp segmentation network GLIA-Net based on deep learning. Computer Engineering, 2022, 48 (12): 248- 254.
doi: 10.19678/j.issn.1000-3428.0062860
|
25 |
WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 568-578.
|
26 |
WANG W H , XIE E Z , LI X , et al. PVTv2: improved baselines with pyramid vision transformer. Computational Visual Media, 2022, 8 (3): 415- 424.
|
27 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL].[2023-12-10]. https://arxiv.org/abs/2105.15203.
|