1 |
ZHANG B J , ZHANG S L . Research on ship design and optimization based on simulation-based design (SBD) technique. Berlin: Springer, 2019.
|
2 |
MIAO A , ZHAO M , WAN D . CFD-based multi-objective optimisation of S60 catamaran considering demihull shape and separation. Applied Ocean Research, 2020, 97, 102071.
|
3 |
GARG V V , STOGNER R H . Hierarchical Latin hypercube sampling. Journal of the American Statistical Association, 2017, 112 (518): 673- 682.
|
4 |
AN G , XIANG G , XIANG X , et al. Resistance prediction and optimization of Tri-SWACH using hybrid surrogate model with particular consideration of outrigger layout. Ocean Engineering, 2023, 285, 115239.
|
5 |
SIMPSON T W , MAUERY T M , KORTE J J , et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 2001, 39 (12): 2233- 2241.
|
6 |
KUDELA J, MATOUSEK R. Combining Lipschitz and RBF surrogate models for high-dimensional computationally expensive problems[EB/OL]. [2024-01-08]. https://arxiv.org/abs/2204.14236.
|
7 |
BUHMANU M D . Radial basis functions. Acta Numerica, 2009, 9, 1- 38.
|
8 |
YAO C J , HAN D W , Tinkle C , et al. Data-driven evolutionary optimization: an overview and case studies. IEEE Transactions on Evolutionary Computation, 2018, 23, 442- 458.
|
9 |
赵昳. 代理模型辅助的高维多目标进化优化方法研究[D]. 太原: 太原科技大学, 2024.
|
|
ZHAO Y. Surrogate assisted high-dimensional multi-objective evolutionary optimization methods[D]. Taiyuan: Taiyuan University of Science and Technology, 2024. (in Chinese)
|
10 |
于成龙, 付国霞, 孙超利, 等. 全局与局部模型交替辅助的差分进化算法. 计算机工程, 2022, 48 (3): 115- 123.
doi: 10.19678/j.issn.1000-3428.0060693
|
|
YU C L , FU G X , SUN C L , et al. Differential evolution algorithm alternately assisted by global and local models. Computer Engineering, 2022, 48 (3): 115- 123.
doi: 10.19678/j.issn.1000-3428.0060693
|
11 |
MCKAY M D , BECKMAN R J , CONOVER W J . A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21 (2): 239- 245.
|
12 |
SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 1986: 151-160.
|
13 |
MIAO A , WAN D . Hull form optimization based on an NM plus CFD integrated method for KCS. International Journal of Computational Methods, 2020, 10, 17.
|
14 |
DIEZ M , CAMPANA E F , STERN F . Design-space dimensionality reduction in shape optimization by Karhunen-Loeve expansion. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 1525- 1544.
|
15 |
LI R , XU P , PENG Y , et al. Multi-objective optimization of a high-speed train head based on the FFD method. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152, 41- 49.
|
16 |
ZHOU H C , JIAO D Q , WANG Q Y , et al. Aerodynamic shape optimization of passenger car fender based on the FFD method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2025, 239 (2/3): 722- 735.
|
17 |
WEISS K , KHOSHGOFTAAR T M , WANG D . A survey of transfer learning. Journal of Big Data, 2016, 3, 1- 40.
|
18 |
DAI W, QIANG Y, XUE G, et al. Boosting for transfer learning[C]//Proceedings of the Twenty-Fourth International Conference on Machine Learning (ICML 2007). Corvallis, Oregon, USA: Oregon State University, 2007: 193-200.
|
19 |
DRUCKER H. Improving regressors using boosting techniques[C]//Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers Inc., 1997: 107-115.
|
20 |
HUANG S , WANG R , YU Y , et al. Construction and application of effluent quality prediction model with insufficient data based on transfer learning algorithm in wastewater treatment plants. Biochemical Engineering Journal, 2023, 191, 108807.
|
21 |
ZHAO C W , JUN H L , KE Y R , et al. Estimation of wheat kernel moisture content based on hyperspectral reflectance and satellite multispectral imagery. International Journal of Applied Earth Observation and Geoinformation, 2024, 126, 103597.
|
22 |
HE C L , ZHANG Y , GONG D W , et al. A review of surrogate-assisted evolutionary algorithms for expensive optimization problems. Expert Systems with Applications, 2023, 217, 119495.
|
23 |
AZZOUZ N, BECHIKH S, SAID L B. Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems[C]//Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). New York, USA: ACM Press, 2014: 581-588.
|
24 |
IKEDA Y , KUBO O , KOBAYASHI Y . Forecast of business performance using an agent-based model and its application to a decision tree Monte Carlo business valuation. Physica A: Statistical Mechanics and Its Applications, 2004, 344 (1/2): 87- 94.
|
25 |
LIN Y , YANG Q , GUAN G . Automatic design optimization of SWATH applying CFD and RSM model. Ocean Engineering, 2019, 172, 146- 154.
|
26 |
刘子怡, 王宇嘉, 孙福禄, 等. 结合特征扰动与分配策略的集成辅助多目标优化算法. 计算机工程, 2022, 48 (6): 115- 123.
doi: 10.19678/j.issn.1000-3428.0061885
|
|
LIU Z Y , WANG Y J , SUN F L , et al. Ensemble-assisted multi-objective optimization algorithm combining feature perturbation and allocation strategy. Computer Engineering, 2022, 48 (6): 115- 123.
doi: 10.19678/j.issn.1000-3428.0061885
|
27 |
MAO L X , DAN L , DONG W G , et al. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization. Journal of Hydrology, 2017, 544, 456- 466.
|
28 |
SUN J , FENG B , XU W , et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evolutionary Computation, 2012, 20 (3): 349- 393.
|
29 |
HAI J K , YAO W Z , HEOW P L . Dynamic optimization based on quantum computation-a comprehensive review. Computers & Structures, 2024, 292, 107255.
|
30 |
KHAN S , KAKLIS P . From regional sensitivity to intra-sensitivity for parametric analysis of free-form shapes: application to ship design. Advanced Engineering Informatics, 2021, 49 (4): 101314.
|
31 |
DAUMÉ H, KUMAR A, SAHA A. Co-regularization based semi-supervised domain adaptation[C]//Proceedings of Neural Information Processing Systems 2010. New York, USA: Curran Associates Inc., 2010: 478-486.
|
32 |
LI F , SHEN W M , CAI X W , et al. A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems. Applied Soft Computing, 2020, 29, 106303.
|
33 |
|
34 |
盛振邦, 刘应中. 船舶原理[D]. 上海: 上海交通大学出版社, 2003: 5-6.
|
|
SHENG Z B, LIU Y Z. Principles of ship[D]. Shanghai: Shanghai Jiao Tong University Press, 2003: 5-6. (in Chinese)
|
35 |
LIU X , ZHAO W , WAN D . Multi-fidelity co-Kriging surrogate model for ship hull form optimization. Ocean Engineering, 2022, 243, 110239.
|
36 |
张乔宇. 代理模型在船舶阻力预报及优化中的应用[D]. 北京: 中国舰船研究院, 2021.
|
|
ZHANG Q Y. Application of surrogate model in the prediction and optimization of ship resistance[D]. Beijing: China Ship Research and Development Academy, 2021. (in Chinese)
|
37 |
PERI D , ROSSETTI M , CAMPANA E F . Design optimization of ship hulls via CVD techniques. Journal of Ship Research, 2001, 45 (2): 140- 149.
|