计算机工程 ›› 2020, Vol. 46 ›› Issue (2): 268-273.doi: 10.19678/j.issn.1000-3428.0053712

• 图形图像处理 • 上一篇    下一篇

基于HC-CFCN模型的肝脏CT图像分割

刘天宇, 姜威威, 何江萍, 韩金仓   

  1. 兰州财经大学 信息工程学院, 兰州 730020
  • 收稿日期:2019-01-17 修回日期:2019-03-15 发布日期:2019-03-25
  • 作者简介:刘天宇(1994-),男,硕士研究生,主研方向为医学图像处理;姜威威,硕士研究生;何江萍(通信作者),副教授;韩金仓,教授。
  • 基金项目:
    国家自然科学基金(61661024)。

Segmentation of Liver CT Images Based on HC-CFCN Model

LIU Tianyu, JIANG Weiwei, HE Jiangping, HAN Jincang   

  1. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China
  • Received:2019-01-17 Revised:2019-03-15 Published:2019-03-25

摘要: 在计算机断层扫描(CT)图像中肝脏与相邻器官灰度值近似,且不同患者的肝脏轮廓存在差异性,导致肝脏CT图像的精确分割成为医学图像处理中的难题之一。为实现肝脏CT图像的自动分割,构建一种层间上下文级联式的全卷积神经网络模型HC-CFCN。利用第1级网络实现肝脏轮廓的粗略分割,并将其分割结果与原始CT图像、肝脏能量图共同作为第2级网络的输入,优化分割结果。在LiTS数据集上的实验结果表明,与U-Net、FCN+3DCRF和V-Net模型相比,HC-CFCN模型的分割精度较高。

关键词: 肝脏图像分割, 级联式全卷积神经网络, 层间上下文信息, 能量图, 计算机断层扫描

Abstract: Livers have similar gray values to surrounding organs in Computed Tomography(CT) images,and the shape of a liver varies among different patients,making precise segmentation of liver CT images a hard problem in medical image processing.To address the problem,this paper proposes a Hierarchical Contextual Cascaded Fully Convolutional Network(HC-CFCN) model to implement automated segmentation of liver CT images.The first-level network is used to realize rough segmentation of the liver contour,and the segmentation results are used as the input of the second-level network together with the original CT image and liver energy image to optimize the segmentation results.Experimental results on the LiTS dataset show that the HC-CFCN model has a higher segmentation precision than U-Net,FCN+3DCRF and V-Net models.

Key words: liver image segmentation, Cascaded Fully Convolutional Network(CFCN), hierarchical contextual information, energy image, Computed Tomography(CT)

中图分类号: