[1] FERLAY J,SHIN H R,BRAY F,et al.Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J].International Journal of Cancer,2010,127(12):2893-2917. [2] LU R,MARZILIANO P,THNG C H.Liver tumor volume estimation by semi-automatic segmentation method[C]// Proceedings of 2005 IEEE Engineering in Medicine and Biology Annual Conference.Washington D.C.,USA:IEEE Press,2005:3296-3299. [3] ROTH H R,LU L,LAY N,et al.Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation[J].Medical Image Analysis,2018,45:94-107. [4] HÄME J,POLLARI P F.Semi-automatic liver tumor segementation with hidden Markov measure field model and non-parametric distribution estimation[J].Medical Image Analysis,2012,16(1):140-146. [5] CHRIST P F,ELSHAER M E A,ETTLINGER F,et al.Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C]// Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin,Germany:Springer,2016:415-423. [6] BEN-COHEN A,DIAMANT I,KLANG E,et al.Fully convolutional network for liver segmentation and lesions detection[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis.Berlin,Germany:Springer,2016:77-85. [7] DOU Qi,CHEN Hao,JIN Yueming,et al.3D deeply supervised network for automatic liver segmentation from CT volumes[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin,Germany:Springer,2016:149-157. [8] LU Fang,WU Fa,HU Zhiyi,et al.Automatic 3D liver location and segmentation via convolutional neural network and graph cut[J].International Journal of Computer Assisted Radiology and Surgery,2017,12(2):171-182. [9] BELLVER M,MANINISZ K K,PONT-TUSETZ J,et al.Detection-aided liver lesion segmentation using deep learning[C]//Proceedings of Conference on Neural Information Processing Systems.New York,USA:NIPS Press,2017:1-5. [10] SOLER L,DELINGETTE H,MALANDAIN G,et al.Fully automatic anatomical,pathological,and functional segmentation from CT scans for hepatic surgery[J].Computer Aided Surgery,2001,6(3):131-142. [11] MOLTZ J H,BORNEMANN L,DICKEN V,et al.Segmentation of liver metastases in CT scans by adaptive thresholding and morphological processing[C]//Proceedings of 2008 MICCAI Workshop.[S.l.]:Kitware Inc.,2008:195-203. [12] HUANG Weimin,YANG Yongzhong,LIN Zhiping,et al.Random feature subspace ensemble based extreme learning machine for liver tumor detection and segmentation[C]//Proceedings of Engineering in Medicine and Biology Society.Bethesda,USA:NCPI,2014:4675-4678. [13] VORONTSOV E,ABI-JAOUDEH N,KADOURY S.Metastatic liver tumor segmentation using texture-based omni-directional deformable surface models[C]//Proceedings of International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging.Berlin,Germany:Springer,2014:74-83. [14] QIU Qingtao,DUAN Jinghao,GONG Guanzhong,et al.Liver auto-segmentation based on three-dimensional dynamic region growing algorithm[J].Chinese Journal of Medical Physics,2017,34(7):660-665.(in Chinese) 仇清涛,段敬豪,巩贯忠,等.基于三维动态区域生长算法的肝脏自动分割[J].中国医学物理学杂志,2017,34(7):660-665. [15] KUO Chaolun,CHENG Shyichyi,LIN Chilang,et al.Texture-based treatment prediction by automatic liver tumor segmentation on computed tomography[C]//Proceedings of 2017 International Conference on Computer,Information and Telecommunication Systems.Washington D.C.,USA:IEEE Press,2017:128-132. [16] LI Dengwang,WANG Jie,CHEN Jinhu,et al.Liver segmentation by using an optimal framework for CT images[J].Chinese Journal of Computers,2016,39(7):1477-1489.(in Chinese) 李登旺,王杰,陈进琥,等.基于最优值搜索框架的CT序列图像肝脏分割[J].计算机学报,2016,39(7):1477-1489. [17] WONG D,LIU J,YIN F,et al.A semi-automated method for liver tumor segmentation based on 2D region growing with knowledge-based constraints[C]//Proceedings of 2008 MICCAI Workshop.[S.l.]:Kitware Inc.,2008:159-163. [18] LI Guodong,CHEN Xinjian,SHI Fei,et al.Automatic liver segmentation based on shape constraints and deformable graph cut in CT images[J].IEEE Transactions on Image Processing,2015,24(12):5315-5329. [19] LINGURARU M G,RICHBOURG W J,LIU J,et al.Tumor burden analysis on computed tomography by automated liver and tumor segmentation[J].IEEE Transactions on Medical Imaging,2012,31(10):1965-1976. [20] LI C,WANG X,EBERL S,et al.A likelihood and local constraint level set model for liver tumor segmentation from CT volumes[J].IEEE Transactions on Biomedical Engineering,2013,60(10):2967-2977. [21] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521:436-444. [22] LONG J,SHELHAMER E,DARRELL T.Fully convolu-tional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3431-3440. [23] SUN Changjian,GUO Shuxu,ZHANG Huimao,et al.Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs[J].Artificial Intelligence in Medicine,2017,83:58-66. [24] ZHANG Jiemei,YANG Cihui.Automatic segmentation algorithm of CT liver image based on RV-FCN[J].Computer Engineering,2019,45(7):258-263.(in Chinese) 张杰妹,杨词慧.基于RV-FCN的CT肝脏影像自动分割算法[J].计算机工程,2019,45(7):258-263. [25] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-01].https://arxiv.org/pdf/1409.1556.pdf. [26] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [27] XIE Saining,TU Zhuowen.Holistically-nested edge detection[J].International Journal of Computer Vision,2017,125(1/2/3):3-18. [28] LEE C Y,XIE S N,GALLAGHER P,et al.Deeply-supervised nets[EB/OL].[2019-01-01].https://arxiv.org/pdf/1409.5185.pdf. [29] SHI Dongcheng,JIA Lingyao,LIANG Chao,et al.Gait recognition method based on phase congruency improve-ment[J].Computer Engineering,2017,43(10):198-202,208.(in Chinese) 史东乘,贾令尧,梁超,等.基于相位一致性改进的步态识别方法[J].计算机工程,2017,43(10):198-202,208. [30] EIGEN D,FERGUS R.Predicting depth,surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:2650-2658. [31] MILLETARI F,NAVAB N,AHMADI S A.V-Net:fully convolutional neural networks for volumetric medical image segmentation[EB/OL].[2019-01-01].https://arxiv.org/pdf/1606.04797.pdf. |