1 |
ROTH G A, JOHNSON C O, ABATE K H, et al. The burden of cardiovascular diseases among US states, 1990-2016. JAMA Cardiology, 2018, 3 (5): 375- 389.
doi: 10.1001/jamacardio.2018.0385
|
2 |
SACCO R L, KASNER S E, BRODERICK J P, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/american stroke association. Stroke, 2013, 44 (7): 2064- 2089.
doi: 10.1161/STR.0b013e318296aeca
|
3 |
LI W, LI Y F, QIN W J, et al. Magnetic resonance image synthesis from brain computed tomography images based on deep learning methods for magnetic resonance-guided radiotherapy. Quantitative Imaging in Medicine and Surgery, 2020, 10 (6): 1223- 1236.
doi: 10.21037/qims-19-885
|
4 |
WANG G T, SONG T, DONG Q, et al. Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks. Medical Image Analysis, 2020, 65, 101787.
doi: 10.1016/j.media.2020.101787
|
5 |
HU N, ZHANG T W, WU Y F, et al. Detecting brain lesions in suspected acute ischemic stroke with CT-based synthetic MRI using generative adversarial networks. Annals of Translational Medicine, 2022, 10 (2): 35.
doi: 10.21037/atm-21-4056
|
6 |
FENG E, QIN P, CHAI R, et al. MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (12): 6047- 6057.
doi: 10.1109/JBHI.2022.3205961
|
7 |
|
8 |
MENG X X, GU Y N, PAN Y S, et al. A novel unified conditional score-based generative framework for multi-modal medical image completion[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2207.03430.
|
9 |
OZBEY M, DALMAZ O, DAR S U H, et al. Unsupervised medical image translation with adversarial diffusion models. IEEE Transactions on Medical Imaging, 2023, 42 (12): 3524- 3539.
doi: 10.1109/TMI.2023.3290149
|
10 |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 2012, 48 (4): 441- 446.
doi: 10.1016/j.ejca.2011.11.036
|
11 |
GE G, ZHANG J. Feature selection methods and predictive models in CT lung cancer radiomics. Journal of Applied Clinical Medical Physics, 2023, 24 (1): 13869.
doi: 10.1002/acm2.13869
|
12 |
CHEN Q, XIA T Y, ZHANG M Y, et al. Radiomics in stroke neuroimaging: techniques, applications, and challenges. Aging and Disease, 2021, 12 (1): 143- 154.
doi: 10.14336/AD.2020.0421
|
13 |
SIKIÖ M, KÖLHI P, RYYMIN P, et al. MRI texture analysis and diffusion tensor imaging in chronic right hemisphere ischemic stroke. Journal of Neuroimaging, 2015, 25 (4): 614- 619.
doi: 10.1111/jon.12185
|
14 |
ORTIZ-RAMÓN R, VALDÉS HERNÁNDEZ M D C. Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Computerized Medical Imaging and Graphics, 2019, 74, 12- 24.
doi: 10.1016/j.compmedimag.2019.02.006
|
15 |
HOFMEISTER J, BERNAVA G, ROSI A, et al. Clot-based radiomics predict a mechanical thrombectomy strategy for successful recanalization in acute ischemic stroke. Stroke, 2020, 51 (8): 2488- 2494.
doi: 10.1161/STROKEAHA.120.030334
|
16 |
GUAN Y, WANG P, WANG Q, et al. Separability of acute cerebral infarction lesions in CT based radiomics: toward artificial intelligence-assisted diagnosis. BioMed Research International, 2020, 2020, 8864756.
doi: 10.1155/2020/8864756
|
17 |
NIE D, TRULLO R, LIAN J, et al. Medical image synthesis with context-aware generative adversarial networks[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2017: 417-425.
|
18 |
YANG H R, SUN J, CARASS A, et al. Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE Transactions on Medical Imaging, 2020, 39 (12): 4249- 4261.
doi: 10.1109/TMI.2020.3015379
|
19 |
BEN-COHEN A, KLANG E, RASKIN S P, et al. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Engineering Applications of Artificial Intelligence, 2019, 78, 186- 194.
doi: 10.1016/j.engappai.2018.11.013
|
20 |
ARMANIOUS K, JIANG C M, FISCHER M, et al. MedGAN: medical image translation using GANs. Computerized Medical Imaging and Graphics, 2020, 79, 101684.
doi: 10.1016/j.compmedimag.2019.101684
|
21 |
王红玉, 朱天薏, 冯筠, 等. 基于生成对抗网络的乳腺MRI图像生成. 西北大学学报(自然科学版), 2023, 53 (3): 348- 358.
URL
|
|
WANG H Y, ZHU T Y, FENG J, et al. Breast MRI image generation method based on generative adversarial network. Journal of Northwest University (Natural Science Edition), 2023, 53 (3): 348- 358.
URL
|
22 |
刘少鹏, 赵慧民, 洪佳明, 等. 面向医学图像生成的鲁棒条件生成对抗网络. 电子学报, 2023, 51 (2): 427- 437.
URL
|
|
LIU S P, ZHAO H M, HONG J M, et al. Medical image synthesis using robust conditional GAN. Acta Electronica Sinica, 2023, 51 (2): 427- 437.
URL
|
23 |
PINAYA W H L, GRAHAM M S, GRAY R, et al. Fast unsupervised brain anomaly detection and segmentation with diffusion models[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2022: 705-714.
|
24 |
DUAN Y Y, QIN J, QIU W Q, et al. Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram. Clinical Radiology, 2022, 77 (10): 723- 731.
doi: 10.1016/j.crad.2022.06.003
|
25 |
PAN S Y, FLORES J, LIN C T, et al. Generative adversarial networks and radiomics supervision for lung lesion synthesis[C]//Proceedings of SPIE'21. Washington D. C., USA: IEEE Press, 2021: 167-172.
|
26 |
CHEN J H, BERMEJO I, DEKKER A, et al. Generative models improve radiomics performance in different tasks and different datasets: an experimental study. Physica Medica, 2022, 98, 11- 17.
doi: 10.1016/j.ejmp.2022.04.008
|
27 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Lecture Notes in Computer Science. Berlin, Germany: Springer, 2015: 234-241.
|
28 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
29 |
SONG Y, SOHL-DICKSTEIN J N, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[EB/OL]. [2023-08-10]. https://arxiv.org/abs/2011.13456.
|