[1] 沈晓波, 聂生东.低剂量CT技术发展及其临床应用[J].中国医学物理学杂志, 2016, 33(3):238-242, 247. SHEN X B, NIE S D.Development and clinical application of low-dose CT[J].Chinese Journal of Medical Physics, 2016, 33(3):238-242, 247.(in Chinese) [2] 罗立民, 胡轶宁, 陈阳.低剂量CT成像的研究现状与展望[J].数据采集与处理, 2015, 30(1):24-34. LUO L M, HU Y N, CHEN Y.Research status and prospect of low-dose CT imaging[J].Data Acquisition and Processing, 2015, 30(1):24-34.(in Chinese) [3] YUNN, QIU T S, LIU W H.Medical image fusion based on sparse representation with KSVD[J].Chinese Journal of Biomedical Engineering, 2019, 28(4):168-172. [4] 李传朋, 秦品乐, 张晋京.基于深度卷积神经网络的图像去噪研究[J].计算机工程, 2017, 43(3):253-260. LI C P, QIN P L, ZHANG J J.Research on image denoising based on deep convolutional neural network[J].Computer Engineering, 2017, 43(3):253-260.(in Chinese) [5] 杨爱萍, 田玉针, 何宇清, 等.基于改进K-SVD和非局部正则化的图像去噪[J].计算机工程, 2015, 41(5):249-253. YANG A P, TIAN Y Z, HE Y Q, et al.Image denoising based on improved K-SVD and non-local regularization[J].Computer Engineering, 2015, 41(5):249-253.(in Chinese) [6] CHEN Y, SHI L Y, FENG Q J, et al.Artifact suppressed dictionary learning for low-dose CT image processing[J].IEEE Transactions on Medical Imaging, 2014, 33(12):2271-2292. [7] 刘坚桥, 唐加山.基于正则化模型的K-SVD算法及其应用[J].软件导刊, 2018, 17(8):114-117. LIU J Q, TANG J S.K-SVD algorithm based on regularization model and its application[J].Software Guide, 2018, 17(8):114-117.(in Chinese) [8] TARIYAL S, MAJUMDAR A, SINGH R, et al.Greedy deep dictionary learning[J].IEEE Access, 2016, 4(11):10096-10109. [9] 章云港, 易本顺, 吴晨玥, 等.基于卷积神经网络的低剂量CT图像去噪方法[J].光学学报, 2018, 38(4):123-129. ZHANG Y G, YI B S, WU C Y, et al.A low-dose CT image denoising method based on convolutional neural network[J].Acta Optica Sinica, 2018, 38(4):123-129.(in Chinese) [10] QIAO L B, ZHANG B F, LU X C, et al.Adaptive linearized alternating direction method of multipliers for non-convex compositely regularized optimization problems[J].Tsinghua Science and Technology, 2017, 22(3):328-341. [11] LI Z B, LI F, ZHU L, et al.Vegetable recognition and classification based on improved VGG deep learning network model[J].International Journal of Computational Intelligence Systems, 2020, 13(1):559-564. [12] XU J C, WANG S M, ZHOU Z J, et al.Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net[J].International Journal of Computer Assisted Radiology and Surgery, 2020, 15(9):1457-1465. [13] 沈萍萍, 余勤.基于离散余弦变换的非局部均值图像去噪算法[J].计算机工程与设计, 2017, 38(1):183-186. SHEN P P, YU Q.Non-local mean image denoising algorithm based on discrete cosine transform[J].Computer Engineering and Design, 2017, 38(1):183-186.(in Chinese) [14] WANG R, ZHANG J L, REN S L, et al.A reducing iteration orthogonal matching pursuit algorithm for compressive sensing[J].Tsinghua Science and Technology, 2016, 21(1):71-79. [15] 王科平, 杨赞亚, 恩德.基于分类冗余字典稀疏表示的图像压缩方法[J].计算机工程, 2017, 43(9):281-287. WANG K P, YANG Z Y, EN D.Image compression method based on sparse representation of classified redundant dictionary[J].Computer Engineering, 2017, 43(9):281-287.(in Chinese) [16] 张顺, 龚怡宏, 王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报, 2019, 42(3):453-482. ZHANG S, GONG Y H, WANG J J.The development of deep convolutional neural network and its application in the field of computer vision[J].Chinese Journal of Computers, 2019, 42(3):453-482.(in Chinese) [17] 桂江生, 麻陈飞, 包晓安, 等.递归深度混合关注网络的细粒度图像分类方法[J].计算机工程, 2018, 45(5):205-209. GUI J S, MA C F, BAO X A, et al.Fine-grained image classification method for recurrent deep hybrid attention network[J].Computer Engineering, 2018, 45(5):205-209.(in Chinese) [18] 周飞燕, 金林鹏, 董军.卷积神经网络研究综述[J].计算机学报, 2017, 40(6):1229-1251. ZHOU F Y, JIN L P, DONG J.A review of research on convolutional neural networks[J].Chinese Journal of Computers, 2017, 40(6):1229-1251.(in Chinese) [19] 段友祥, 李钰, 孙歧峰, 等.改进的Alexnet模型及在油井示功图分类中的应用[J].计算机应用与软件, 2018, 35(7):226-230, 272. DUAN Y X, LI Y, SUN Q F, et al.Improved Alexnet model and its application in oil well indicator diagram classification[J].Computer Application and Software, 2018, 35(7):226-230, 272.(in Chinese) [20] ASSAD M B, KICZALES R.Deep biomedical image classfication using diagonal bilinear interpolation and resuial network[J].International Journal of Interligent Network, 2020, 1(1):148-156. [21] 陈晨.贪婪算法在稀疏学习中的应用[D].武汉:湖北大学, 2016. CHEN C.Application of greedy algorithm in sparse learning[D].Wuhan:Hubei University, 2016.(in Chinese) [22] WU J F, DAI F, HU G, et al.Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle[J].Journal of X-ray Science and Technology, 2018, 26(4):1-20. |