1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71 (3): 209- 249.
doi: 10.3322/caac.21660
|
2 |
SETHI G, SAINI B S, SINGH D. Segmentation of cancerous regions in liver using an edge-based and phase congruent region enhancement method. Computers & Electrical Engineering, 2016, 53, 244- 262.
|
3 |
PATIL S, UDUPI V R, PATOLE D. A robust system for segmentation of primary liver tumor in CT images. International Journal of Computer Applications, 2013, 75 (13): 6- 10.
doi: 10.5120/13169-0708
|
4 |
YAN J Y, SCHWARTZ L H, ZHAO B S. Semiautomatic segmentation of liver metastases on volumetric CT images. Medical Physics, 2015, 42 (11): 6283- 6293.
doi: 10.1118/1.4932365
|
5 |
MERKOW J, MARSDEN A, KRIEGMAN D, et al. Dense volume-to-volume vascular boundary detection[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2016: 371-379.
|
6 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
7 |
刘羽, 吴蓉蓉, 唐璐, 等. U-Net支气管超声弹性图像纵膈淋巴结分割. 中国图象图形学报, 2022, 27 (10): 3082- 3091.
doi: 10.11834/jig.210225
|
|
LIU Y, WU R R, TANG L, et al. Segmentation of mediastinal lymph nodes in U-Net bronchial ultrasonic elastography. Journal of Image and Graphics, 2022, 27 (10): 3082- 3091.
doi: 10.11834/jig.210225
|
8 |
曹加旺, 田维维, 刘学玲, 等. 基于改进U-Net的人脑黑质致密部分割. 计算机工程, 2022, 48 (11): 14-21, 29.
doi: 10.19678/j.issn.1000-3428.0063273
|
|
CAO J W, TIAN W W, LIU X L, et al. Segmentation of brain substantia nigra pars compacta based on improved U-Net. Computer Engineering, 2022, 48 (11): 14-21, 29.
doi: 10.19678/j.issn.1000-3428.0063273
|
9 |
张相芬, 刘艳, 袁非牛. 基于倒金字塔深度学习网络的三维医学图像分割. 计算机工程, 2022, 48 (12): 304- 311.
URL
|
|
ZHANG X F, LIU Y, YUAN F N. Three-dimensional medical image segmentation based on inverted pyramid deep learning network. Computer Engineering, 2022, 48 (12): 304- 311.
URL
|
10 |
刘文, 亓文霞, 仲国强, 等. 基于Concat-UNet的食管癌肿瘤医学影像分割研究. 计算机工程, 2022, 48 (12): 312- 320.
URL
|
|
LIU W, QI W X, ZHONG G Q, et al. Study on medical image segmentation of esophageal cancer tumor based on Concat-UNet. Computer Engineering, 2022, 48 (12): 312- 320.
URL
|
11 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
12 |
VALANARASU J M J, SINDAGI V A, HACIHALILOGLU I, et al. KiU-Net: towards accurate segmentation of biomedical images using over-complete representations[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2020: 363-373.
|
13 |
郝华颖, 赵昆, 苏攀, 等. 一种基于改进ResU-Net的角膜神经分割算法. 计算机工程, 2021, 47 (1): 217- 223.
URL
|
|
HAO H Y, ZHAO K, SU P, et al. A corneal nerve segmentation algorithm based on improved ResU-Net. Computer Engineering, 2021, 47 (1): 217- 223.
URL
|
14 |
林志洁, 郑秋岚, 梁涌, 等. 基于内卷U-Net的医学图像分割模型. 计算机工程, 2022, 48 (8): 180- 186.
URL
|
|
LIN Z J, ZHENG Q L, LIANG Y, et al. Medical image segmentation model based on involution U-Net. Computer Engineering, 2022, 48 (8): 180- 186.
URL
|
15 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2022-12-08]. https://arxiv.org/abs/2010.11929.
|
16 |
ZHOU Z W, RAHMAN S M M, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis and International Workshop on Multimodal Learning for Clinical Decision Support. Berlin, Germany: Springer, 2018: 3-11.
|
17 |
BENČEVIĆ M, GALIĆ I, HABIJAN M, et al. Training on polar image transformations improves biomedical image segmentation. IEEE Access, 2021, 9, 133365- 133375.
doi: 10.1109/ACCESS.2021.3116265
|
18 |
HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: transformers for 3D medical image segmentation[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2022: 1748-1758.
|
19 |
VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2021: 36-46.
|
20 |
CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2023: 205-218.
|
21 |
LIN A L, CHEN B Z, XU J Y, et al. DS-TransUNet: dual Swin Transformer U-Net for medical image segmentation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 15.
|
22 |
|
23 |
BILIC P, CHRIST P, LI H B, et al. The liver tumor segmentation benchmark(LiTS). Medical Image Analysis, 2023, 84, 102680.
|
24 |
|
25 |
YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 2006, 31 (3): 1116- 1128.
|
26 |
WANG W X, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2021: 109-119.
|