计算机工程 ›› 2010, Vol. 36 ›› Issue (5): 223-224,.doi: 10.3969/j.issn.1000-3428.2010.05.081

• 图形图像处理 • 上一篇    下一篇

Contourlet域中邻域窗最优阈值滤噪算法

王 晅1,张小景1,马进明2   

  1. (1. 陕西师范大学物理学与信息技术学院,西安 710062;2. 上海电力学院,上海 200090)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2010-03-05 发布日期:2010-03-05

Denoising Algorithm with Neighboring Window Optimal Threshold in Contourlet Domain

WANG Xuan1, ZHANG Xiao-jing1, MA Jin-ming2   

  1. (1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062; 2. Shanghai University of Electric Power, Shanghai 200090)
  • Received:1900-01-01 Revised:1900-01-01 Online:2010-03-05 Published:2010-03-05

摘要: 提出一种基于Contourlet变换域的图像滤噪算法,对带噪图像进行多尺度、多方向的Contourlet分解,依据Contourlet变换域系数的估计损失期望最小化准则,在Contourlet域中得到各子带内邻域系数的滤噪最优阈值与最优窗口尺寸,利用Contourlet变换域系数的萎缩实现滤噪。仿真结果表明,与现有的Contourlet变换域图像滤噪算法相比,该算法能有效保护图像的细节和纹理,具有较好的视觉效果和较高的峰值信噪比。

关键词: 图像滤噪, Contourlet 变换, Stein估计

Abstract: This paper proposes a novel image denoising algorithm based on Contourlet domain. By using Contourlet transform, the noised image is decomposed into a low frequency subband and a set of multiscale and multidirectional high frequency subbands. Optimal thresholds and neighbouring window sizes for each subband are determined by minimizing the loss expectation of estimating Contourlet coefficients and image denoising is implemented via shrinkage of Contourlet coefficients. Simulation results show the superiority of the proposed method in denoising noise and preserving texture details compared with the existing methods and the proposed method yields better visual effect and higher PSNR as a result of considering dependencies of Contourlet neighborhood coefficients.

Key words: image denoising, Contourlet transform, Stein estimation

中图分类号: