[1] ZECH E, RIMÉ B. Is talking about an emotional experience helpful?effects on emotional recovery and perceived benefits[J]. Clinical Psychology&Psychotherapy, 2005, 12(4):270-287. [2] SABOUR S, ZHENG C J, HUANG M L. CEM:commonsense-aware empathetic response generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2022:11229-11237. [3] ZHOU H, HUANG M L, ZHANG T Y, et al. Emotional chatting machine:emotional conversation generation with internal and external memory[EB/OL].[2023-08-12]. https://arxiv.org/abs/1704.01074v4. [4] HUANG C Y, ZAIANE O, TRABELSI A, et al. Automatic dialogue generation with expressed emotions[C]//Proceedings of the 2018 Conference on the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 2(Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2018:49-54. [5] COLOMBO P, WITON W, MODI A, et al. Affect-driven dialog generation[C]//Proceedings of the 2019 Conference on the North. Stroudsburg, USA:Association for Computational Linguistics, 2019:3734-3743. [6] SHEN L, FENG Y. CDL:curriculum dual learning for emotion-controllable response generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2020:556-566. [7] 杨丰瑞,霍娜,张许红,等.基于注意力机制的主题扩展情感对话生成[J].计算机应用, 2021, 41(4):1078-1083. YANG F R, HUO N, ZHANG X H, et al. Topic-expanded emotional conversation generation based on attention mechanism[J]. Journal of Computer Applications, 2021, 41(4):1078-1083.(in Chinese) [8] LIN Z J, MADOTTO A, SHIN J, et al. MoEL:mixture of empathetic listeners[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA:Association for Computational Linguistics, 2019:121-132. [9] MAJUMDER N, HONG P F, PENG S S, et al. MIME:MIMicking emotions for empathetic response generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2020:8968-8979. [10] LI Q T, CHEN H S, REN Z C, et al. EmpDG:multi-resolution interactive empathetic dialogue generation[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA:International Committee on Computational Linguistics, 2020:4454-4466. [11] RASHKIN H, SMITH E M, LI M, et al. Towards empathetic open-domain conversation models:a new benchmark and dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2019:5370-5381. [12] LUBIS N, SAKTI S, YOSHINO K, et al. Eliciting positive emotion through affect-sensitive dialogue response generation:a neural network approach[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Louisiana, USA:AAAI Press, 2018:5293-5300. [13] WELIVITA A, PU P. A taxonomy of empathetic response intents in human social conversations[EB/OL].[2023-08-12]. https://arxiv.org/abs/2012.04080. [14] SHIN J, XU P, MADOTTO A, et al. Generating empathetic responses by looking ahead the user's sentiment[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA:IEEE Press, 2020:7989-7993. [15] LIN Z J, XU P, WINATA G I, et al. CAiRE:an end-to-end empathetic chatbot[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2020, 34(9):13622-13623. [16] 冯广敬,刘箴,刘婷婷,等.基于情感变量的二阶段对话生成模型[J].中文信息学报, 2022, 36(5):102-111. FENG G J, LIU Z, LIU T T, et al. A two-stage dialogue generation model based on affective variables[J]. Journal of Chinese Information Processing, 2022, 36(5):102-111.(in Chinese) [17] 张顺香,李健,朱广丽,等.基于改进编解码器和情感词典的对话生成模型[J].计算机工程与设计, 2023, 44(2):570-575. ZHANG S X, LI J, ZHU G L, et al. Dialogue generation model based on improved encoder-decoder and emotion dictionary[J]. Computer Engineering and Design, 2023, 44(2):570-575.(in Chinese) [18] SHEN L, ZHANG J C, OU J, et al. Constructing emotional consensus and utilizing unpaired data for empathetic dialogue generation[C]//Proceedings of the Findings of the Association for Computational Linguistics:EMNLP 2021. Stroudsburg, USA:Association for Computational Linguistics, 2021:3124-3134. [19] 徐晖,王中卿,李寿山,等.结合情感信息的个性化对话生成[J].计算机科学, 2022, 49(S2):99-104. XU H, WANG Z Q, LI S S, et al. Personalized dialogue generation combined with emotional information[J]. Computer Science, 2022, 49(S2):99-104.(in Chinese) [20] 唐宏,彭金枝,郭艳霞,等.融合主题预测和情感推理的共情回复生成方法[J].计算机工程与应用, 2023, 59(14):114-123. TANG H, PENG J Z, GUO Y X, et al. Empathetic response generation by integrating topic prediction and emotion reasoning[J]. Computer Engineering and Applications, 2023, 59(14):114-123.(in Chinese) [21] 管梦雨,王中卿,李寿山,等.基于对话约束的回复生成研究[J].中文信息学报, 2022, 36(8):144-153. GUAN M Y, WANG Z Q, LI S S, et al. Research on response generation via dialogue constraints[J]. Journal of Chinese Information Processing, 2022, 36(8):144-153.(in Chinese) [22] GAO J, LIU Y H, DENG H L, et al. Improving empathetic response generation by recognizing emotion cause in conversations[C]//Proceedings of the Findings of the Association for Computational Linguistics:EMNLP 2021. Stroudsburg, USA:Association for Computational Linguistics, 2021:807-819. [23] WANG J S, LI W J, LIN P Q, et al. Empathetic response generation through graph-based multi-hop reasoning on emotional causality[J]. Knowledge-Based Systems, 2021, 233:107547. [24] ZHENG C J, LIU Y, CHEN W, et al. CoMAE:a multi-factor hierarchical framework for empathetic response generation[C]//Proceedings of the Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021. Stroudsburg, USA:Association for Computational Linguistics, 2021:813-824. [25] ZHONG P X, WANG D, LI P F, et al. CARE:commonsense-aware emotional response generation with latent concepts[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2021:14577-14585. [26] LI Q T, LI P J, REN Z C, et al. Knowledge bridging for empathetic dialogue generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2022:10993-11001. [27] TU Q, LI Y R, CUI J W, et al. MISC:a mixed strategy-aware model integrating COMET for emotional support conversation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2022:308-319. [28] LEE J Y, LEE K A, GAN W S. Improving contextual coherence in variational personalized and empathetic dialogue agents[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA:IEEE Press, 2022:7052-7056. [29] GHOSAL D, MAJUMDER N, GELBUKH A, et al. COSMIC:commonsense knowledge for eMotion Identification in Conversations[C]//Proceedings of the Findings of the Association for Computational Linguistics:EMNLP 2020. Stroudsburg, USA:Association for Computational Linguistics, 2020:2470-2481. [30] JIANG S J, REN P J, MONZ C, et al. Improving neural response diversity with frequency-aware cross-entropy loss[C]//Proceedings of the World Wide Web Conference. New York, USA:ACM Press, 2019:2879-2885. |