[1] BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale:system design[EB/OL].[2023-05-20]. https://arxiv.org/pdf/1902.01046. [2] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL].[2023-05-20].https://arxiv.org/pdf/1602.05629. [3] KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning:strategies for improving communication efficiency[EB/OL].[2023-05-20]. https://arxiv.org/pdf/1610.05492. [4] CHEN H M, WANG H D, LONG Q Y, et al. Advancements in federated learning:models, methods, and privacy[EB/OL].[2023-05-20]. http://arxiv.org/abs/2302.11466. [5] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends? in Machine Learning, 2021, 14(1/2):1-210. [6] XU G L, WU Y W, HU J T, et al. Achieving fairness in dermatological disease diagnosis through automatic weight adjusting federated learning and personalization[EB/OL].[2023-05-20]. http://arxiv.org/abs/2208.11187. [7] DONG C H, XIE Y X, DING B L, et al. Collaborating heterogeneous natural language processing tasks via federated learning[EB/OL].[2023-05-20]. http://arxiv.org/abs/2212.05789. [8] NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for Internet of Things:a comprehensive survey[J]. IEEE Communications Surveys&Tutorials, 2021, 23(3):1622-1658. [9] GRANDVALET Y, BENGIO Y. Semi-supervised learning by entropy minimization[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. New York, USA:ACM Press,2004:529-536. [10] KIM G. Recent deep semi-supervised learning approaches and related works[EB/OL].[2023-05-20]. https://arxiv.org/abs/2106.11528v1. [11] TARVAINEN A, VALPOLA H. Mean teachers are better role models:weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL].[2023-05-20]. https://arxiv.org/pdf/1703.01780v2. [12] XIE Q Z, LUONG M T, HOVY E, et al. Self-training with noisy student improves ImageNet classification[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:10684-10695. [13] JEONG W, YOON J, YANG E, et al. Federated semi-supervised learning with inter-client consistency&disjoint learning[EB/OL].[2023-05-20].http://arxiv.org/abs/2006.12097. [14] LONG Z W, WANG J Q, WANG Y Q, et al. FedCon:a contrastive framework for federated semi-supervised learning[EB/OL].[2023-05-20]. https://arxiv.org/abs/2109.04533. [15] ZHAO J, GHOSH S, BHARADWAJ A, et al. When does the student surpass the teacher?federated semi-supervised learning with teacher-student EMA[EB/OL].[2023-05-20]. http://arxiv.org/abs/2301.10114. [16] HSU T M H, QI H, BROWN M. Measuring the effects of non-identical data distribution for federated visual classification[EB/OL].[2023-05-20]. https://arxiv.org/abs/1909.06335v1. [17] WANG Z G, WANG X T, SUN R Y, et al. Federated semi-supervised learning with class distribution mismatch[EB/OL].[2023-05-20]. https://arxiv.org/abs/2111.00010. [18] ZHANG Z, MA S Y, NIE J T, et al. Semi-supervised federated learning with non-IID data:algorithm and system design[C]//Proceedings of the 23rd International Conference on High Performance Computing&Communications; 7th International Conference on Data Science&Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud&Big Data Systems&Application (HPCC/DSS/SmartCity/DependSys). Washington D. C., USA:IEEE Press, 2021:157-164. [19] ZHAO Y, LI M, LAI L Z, et al. Federated learning with non-IID data[EB/OL].[2023-05-20].http://arxiv.org/pdf/1806.00582. [20] LI Z J, SHAO J W, MAO Y Y, et al. Federated learning with GAN-based data synthesis for Non-IID clients[M]//GOEBEL R, YU H, FALTINGS B, et al. Trustworthy Federated Learning. Berlin, Germany:Springer, 2023:17-32. [21] LIANG X X, LIN Y Q, FU H Z, et al. RSCFed:random sampling consensus federated semi-supervised learning[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2022:10144-10153. [22] 王树芬,张哲,马士尧,等.一种鲁棒的半监督联邦学习系统[J].计算机工程, 2022, 48(6):107-114, 123. WANG S F, ZHANG Z, MA S Y, et al. A robust semi-supervised federated learning system[J]. Computer Engineering, 2022, 48(6):107-114, 123.(in Chinese) [23] LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[EB/OL].[2023-05-20].https://arxiv.org/abs/1812.06127v5. [24] OUALI Y, HUDELOT C, TAMI M. An overview of deep semi-supervised learning[EB/OL].[2023-05-20]. https://arxiv.org/abs/2006.05278. [25] YANG L H, ZHUO W, QI L, et al. ST:make self-trainingwork better for semi-supervised semantic segmentation[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2022:4258-4267. [26] LEE D H. Pseudo-label:The simple and efficient semi-supervised learning method for deep neural networks[EB/OL].[2023-05-20]. https://www.researchgate.net/profile/Dong-Hyun-Lee/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks/links/55bc4ada08ae092e9660b776/Pseudo-Label-The-Simple-and-Efficient-Semi-Supervised-Learning-Method-for-Deep-Neural-Networks.pdf. [27] RIZVE M N, DUARTE K, RAWAT Y S, et al. In defense of pseudo-labeling:an uncertainty-aware pseudo-label selection framework for semi-supervised learning[EB/OL].[2023-05-20]. https://arxiv.org/abs/2101.06329. [28] SOHN K, BERTHELOT D, LI C L, et al. Fixmatch:Simplifying semi-supervised learning with consistency and confidence[J]. Advances in Neural Information Processing Systems, 2020, 33:596-608. [29] HUANG J. Maximum likelihood estimation of Dirichlet distribution parameters[J]. CMU Technique report, 2005, 18. |