[1] CORBETT A T, ANDERSON J R. Knowledge tracing:modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4):253-278. [2] 陈恩红,刘淇,王士进,等.面向智能教育的自适应学习关键技术与应用[J].智能系统学报, 2021, 16(5):886-898. CHEN E H, LIU Q, WANG S J, et al. Key techniques and application of intelligent education oriented adaptive learning[J]. CAAI Transactions on Intelligent Systems, 2021, 16(5):886-898.(in Chinese) [3] 陈德鑫,占袁圆,杨兵.深度学习技术在教育大数据挖掘领域的应用分析[J].电化教育研究, 2019, 40(2):68-76. CHEN D X, ZHAN Y Y, YANG B. Analysis of applications of deep learning in educational big data mining[J]. e-Education Research, 2019, 40(2):68-76.(in Chinese) [4] 于婉莹,梁美玉,王笑笑,等.基于深度注意力网络的课堂教学视频中学生表情识别与智能教学评估[J].计算机应用, 2022, 42(3):743-749. YU W Y, LIANG M Y, WANG X X, et al. Student expression recognition and intelligent teaching evaluation in classroom teaching videos based on deep attention network[J]. Journal of Computer Applications, 2022, 42(3):743-749.(in Chinese) [5] 杨坤融,熊余,张健,等.面向长短期混合数据的MOOC辍学预测策略研究[J].计算机工程与应用, 2023, 59(4):130-138. YANG K R, XIONG Y, ZHANG J, et al. Research on MOOC dropout prediction strategy for long-and short-term mixed data[J]. Computer Engineering and Applications, 2023, 59(4):130-138.(in Chinese) [6] 董永峰,王雅琮,董瑶,等.在线学习资源推荐综述[J].计算机应用, 2023, 43(6):1655-1663. DONG Y F, WANG Y C, DONG Y, et al. Survey of online learning resource recommendation[J]. Journal of Computer Applications, 2023, 43(6):1655-1663.(in Chinese) [7] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2015:505-513. [8] 郭艺,何廷年,李爱斌,等.融合GA-CART和Deep-IRT的知识追踪模型[J].计算机工程与科学, 2023, 45(9):1691-1700. GUO Y, HE T N, LI A B, et al. A knowledge tracing model fusing GA-CART and Deep-IRT[J]. Computer Engineering⪼ience, 2023, 45(9):1691-1700.(in Chinese) [9] 李晓光,魏思齐,张昕,等. LFKT:学习与遗忘融合的深度知识追踪模型[J].软件学报, 2021, 32(3):818-830. LI X G, WEI S Q, ZHANG X, et al. LFKT:deep knowledge tracing model with learning and forgetting behavior merging[J]. Journal of Software, 2021, 32(3):818-830.(in Chinese) [10] 张凯,刘月,覃正楚,等.概念表示增强的知识追踪模型[J].计算机应用研究, 2022, 39(11):3309-3314. ZHANG K, LIU Y, QIN Z C, et al. Concept representation enhanced knowledge tracing[J]. Application Research of Computers, 2022, 39(11):3309-3314.(in Chinese) [11] GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining. New York, USA:ACM Press, 2020:2330-2339. [12] ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA:ACM Press, 2017:765-774. [13] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the World Wide Web Conference. New York, USA:ACM Press, 2019:3101-3107. [14] YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models[C]//Proceedings of International Conference on Artificial Intelligence in Education. Berlin, Germany:Springer, 2013:171-180. [15] PAVLIK P I, CEN H, KOEDINGER K R. Performance factors analysis-a new alternative to knowledge tracing[C]//Proceedings of the Conference on Artificial Intelligence in Education:Building Learning Systems that Care:From Knowledge Representation to Affective Modelling. New York, USA:ACM Press, 2009:531-538. [16] SONG X Y, LI J X, CAI T T, et al. A survey on deep learning based knowledge tracing[J]. Knowledge-Based Systems, 2022, 258:110036. [17] LONG T, LIU Y F, SHEN J, et al. Tracing knowledge state with individual cognition and acquisition estimation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2021:173-182. [18] GUO X P, HUANG Z J, GAO J, et al. Enhancing knowledge tracing via adversarial training[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA:ACM Press, 2021:367-375. [19] WANG C Y, MA W Z, ZHANG M, et al. Temporal cross-effects in knowledge tracing[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York, USA:ACM Press, 2021:517-525. [20] WU J Z, HUANG Z Y, LIU Q, et al. Federated deep knowledge tracing[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York, USA:ACM Press, 2021:662-670. [21] YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]//Proceedings of the 15th Annual ACM Conference on Learning at Scale. New York, USA:ACM Press, 2018:1-10. [22] PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing[EB/OL].[2023-03-25]. http://arxiv.org/abs/1907.06837. [23] CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]//Proceedings of the 17th ACM Conference on Learning@Scale. New York, USA:ACM Press, 2020:341-344. [24] SHIN D, SHIM Y, YU H, et al. SAINT+:integrating temporal features for EdNet correctness prediction[C]//Proceedings of the 11th International Learning Analytics and Knowledge Conference. New York, USA:ACM Press, 2021:490-496. [25] ABDELRAHMAN G, WANG Q. Knowledge tracing with sequential key-value memory networks[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press,2019:1-10. [26] SHEN S H, LIU Q, CHEN E H, et al. Learning process-consistent knowledge tracing[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery&Data Mining. New York, USA:ACM Press, 2021:1452-1460. [27] FENG M Y, HEFFERNAN N, KOEDINGER K. Addressing the assessment challenge with an online system that tutors as it assesses[J]. User Modeling and User-Adapted Interaction, 2009, 19(3):243-266. [28] CHOI Y, LEE Y, SHIN D, et al. EdNet:a large-scale hierarchical dataset in education[C]//Proceedings of International Conference on Artificial Intelligence in Education. Berlin, Germany:Springer, 2020:69-73. [29] 王健宗,孔令炜,黄章成,等.图神经网络综述[J].计算机工程, 2021, 47(4):1-12. WANG J Z, KONG L W, HUANG Z C, et al. Survey of graph neural network[J]. Computer Engineering, 2021, 47(4):1-12.(in Chinese) |